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INTRODUCCION

“Juro solemnemente que mis intenciones no son buenas.”- George
Weasley. Harry Potter y el Prisionero de Azkaban. Capitulo 10. El
mapa del merodeador



1.1  Objetivo

El objetivo de esta tesis es analizar el fendmeno de vibraciones mecanicas en
medios continuos, tales como membranas (con geometria rectangular y circular) y placas
(geometria rectangular). Debido a la complejidad para visualizar los patrones de la
vibracion y la localizacion de nodos y antinodos para cada uno de los modos de vibracion
(simetricos y antisimétricos), se desarrolld6 una herramienta de simulacion basada en la
plataforma ADEFID (ADvanced Engineering platForm for Industrial Development) [1].
Con esta herramienta el usuario podra interactuar con los parametros que describen cada
uno de los casos considerados en la simulacion. Ademas del caso de vibracion libre, se
presentan algunos ejemplos que se consideraron interesantes para su analisis; la respuesta a
un pulso en una membrana circular que inicia en el centro del circulo y que se propaga
radialmente hasta su borde y luego la respuesta a un tren de pulsos. Todo esto se desarrollo
en un entorno grafico e interactivo, donde el usuario puede modificar los diferentes

parametros que gobiernan el fendmeno vibratorio.

El por qué del estudio de las vibraciones es debido a que la mayoria de las maquinas
y las estructuras experimentan cierto grado de vibracion y, su disefio y operacion, requiere
generalmente consideracion de su respuesta vibratoria. La vibracion provoca limitantes en
la velocidad en los procesos de manufactura, baja calidad en los productos elaborados por
maquinas-herramientas, ruido, y estas vibraciones pueden alcanzar a otros instrumentos de

precision y causar fallas de funcionamiento.

1.2 Fundamentos

A continuacion se presentan los conceptos fundamentales para el desarrollo de este

trabajo de tesis.

Vibracién. Se define una vibracion como la variacion con respecto al tiempo, de la
magnitud de un parametro que define, totalmente o parcialmente, el estado de un sistema —

mecanico, eléctrico, econémico, bioloégico—, respecto a una referencia especifica, cuando la



magnitud del pardmetro es alternativamente mayor y menor que la de referencia [2]. En

esta tesis el interés fundamental estara centrado en los sistemas mecanicos.

Vibracién Periddica. Una vibracién periodica es aquella que se repite con todas sus
caracteristicas después de un intervalo de tiempo conocido como periodo fundamental de la
vibracion y representado por T [2]. Asociada a una vibracion periddica esta su frecuencia,

definida como el namero de veces que la vibracion se repite por unidad de tiempo; es decir

f = (11)

1
T

Es importante sefialar que para que un sistema mecanico este sujeto a vibracion es
necesario la presencia de masa o inercia y elasticidad. Aun cuando todos los sistemas
mecanicos disipan energia, su presencia no es necesaria para que un sistema este sujeto a
vibracion y en muchos casos la modelacion y la cuantificacion de las propiedades
disipativas de energia de un sistema son tan complicadas que frecuentemente se desprecian.

En sintonia con este hecho, en este trabajo de tesis, no se considera la disipacion de energia.

Una caracteristica fundamental de los sistemas vibratorios es el nimero de grados

de libertad del sistema.

Grados de Libertad. Los grados de libertad de un sistema es el nimero minimo y

suficiente de variables que permiten determinar de manera completa el estado de un sistema

[3].

Para un sistema mecanico, el estado del sistema significa la posicion del sistema. Es
decir, la posicion de todas las particulas de todos los cuerpos rigidos que forman el sistema.
Dependiendo del nimero de grados de libertad, los sistemas vibratorios se clasifican en

sistemas discretos y sistemas continuos.



1.2.1 Sistemas discretos.

En un sistema discreto se considera que los elementos inerciales del sistema estan
concentrados, “lumped”, en ciertas partes del sistema que carecen de propiedades elésticas
y viceversa, los elementos elasticos del sistema estan concentrados en ciertas partes del
sistema que carecen de propiedades inerciales. Evidentemente, este es un modelo
matematico que, de manera quizas sorprendente, permite analizar muy satisfactoriamente el
comportamiento de un buen nimero de sistemas vibratorios mecéanicos. En los sistemas
discretos el nimero de grados de libertad es igual al nimero de elementos inerciales que el
sistema posee. lgualmente, un sistema discreto tiene tantas frecuencias naturales como
grados de libertad tenga. Las frecuencias naturales son las frecuencias a las cuales el
sistema vibra cuando se excita de manera libre, el caso mas sencillo de excitacion libre es
cuando el sistema se separa de su posicion de equilibrio y se suelta a partir del reposo.
Asociado a cada frecuencia natural hay un modo de vibracién, los modos de vibracion
representan la relacion de las amplitudes de la vibracion de cada uno de los elementos
inerciales del sistema. De manera natural estos modos de vibracion pueden considerarse
elementos de un espacio vectorial real R" donde n es el nimero de grados de libertad del
sistema. Mas aun, puede probarse que los vectores de R" que representan los modos de

vibracion, son ortogonales respecto a la métrica euclidiana usual [2]

Finalmente, es importante notar que si la frecuencia de la excitacion de un sistema
discreto coincide con alguna de las frecuencias naturales del sistema, se presenta el
fendmeno de resonancia, que consiste en la presencia de vibraciones de magnitud elevada a

pesar de que la magnitud de la excitacidn sea pequefia.

1.2.2 Sistemas continuos.

En contraste, en un sistema continuo, la inercia, la elasticidad, y la disipacion
energia si se desea incluir, se distribuyen de manera continua a lo largo de todo el sistema.

Como consecuencia la determinacion de la posicion de los elementos inerciales de un



sistema continuo requiere un numero infinito de variables. De esta observacion, se

desprenden las siguientes consecuencias:

1 Un sistema continuo tiene un nimero infinito de grados de libertad.
2 Un sistema continuo tiene un nimero infinito de frecuencias naturales.
3 Los modos de vibracion asociados a las frecuencias naturales ya no son

elementos de R" sino una funcién real de variable real continua y diferenciable. Las
funciones que representan los modos de vibracién asociados a diferentes frecuencias

naturales son ortogonales entre si.

4 Cuando un sistema continuo se sujeta a una excitacion cuya frecuencia
coincide con alguna de las frecuencias naturales del sistema se presenta el fenomeno de
resonancia. Durante este fenOmeno, existen conjuntos de puntos en un sistema continuo
cuya vibracidn es nula, estos conjuntos se conocen como nodos mientras otros conjuntos de
puntos estan sujetos a vibraciones de magnitud considerable. Estos conjuntos de puntos se

conocen como antinodos.

Una representacién de los nodos y antinodos que se presentan durante la vibracion
se observa en una cuerda de longitud finita. Debido a las oscilaciones de la cuerda en los
instantes sucesivos de tiempo se puede observar que ciertos puntos (nodos) en la cuerda se
someten a cero amplitud de vibracién, mientras que otros puntos (antinodos) alcanzaran la
maxima amplitud. Los nodos y antinodos ocurren a distancias regulares a lo largo de la
cuerda y se mantienen fijos en esa posicion durante todo el tiempo. Este tipo de vibracion

se llama estacionaria o Standing wave, representada en la ec. (1.2) [3].

f(x,t) =2A sen (kx) cos( wt) (1.2)



Fig. 1.1.-Onda estacionaria en una cuerda tensa de longitud L.

En una cuerda fija en ambos extremos, una onda estacionaria se forma cuando la
frecuencia de la onda es tal que los puntos de amplitud de desplazamiento cero,
corresponden con los bordes de la cuerda. Asi se tendra una onda estacionaria cuando la
longitud de la cuerda corresponda a media longitud de onda, A, o valores equivalentes a
mA/2 (m =1, 2, 3,......). La onda viajera que se desplaza hacia la derecha, y la reflejada en
el extremo (de igual amplitud y frecuencia) que se desplaza hacia la izquierda, interferiran,
de manera que los puntos de amplitud de desplazamiento cero pareceran que no se mueven,

generando, nodos (N) y antinodos (A), como se muestra en la fig. 1.1.

Mientras que los nodos son puntos en ondas estacionarias unidimensionales (la onda
transversal en cuerdas vibrantes y la onda longitudinal generada por la variacion de la
amplitud de presion en las ondas sonoras), en un oscilador bidimensional hay curvas a lo
largo de las cuales no hay desplazamiento de los elementos del medio continuo, en la fig.
1.2 se representan estas curvas o en el caso de la placa se tienen lineas de cero amplitud de

vibracién.



Fig. 1.2.- Representacion esquematica de curvas y lineas de amplitud cero en un medio

continuo.

Por Gltimo es importante mencionar que en la realidad la totalidad de los sistemas
vibratorios son continuos, pues no hay elementos inerciales que no tengan elasticidad y no
hay elementos elasticos que no tengan inercia. La eleccién de modelar un sistema dado
como discreto o continuo depende de la finalidad del analisis y la exactitud esperada de los
resultados. EI movimiento de un sistema de n grados de libertad se determina por la
solucion de un sistema de n ecuaciones diferenciales ordinarias de segundo orden,
usualmente lineales. En contraste, el movimiento de un sistema continuo se determina por
la solucién de una ecuacion diferencial parcial. Dado que la solucion de un sistema de
ecuaciones diferenciales ordinarias lineales es relativamente simple, es facil encontrar la
respuesta de un sistema discreto sujeto a una excitacion especifica en forma cerrada o, en el
peor de los casos, mediante métodos numeéricos estandar. Por otra parte, la solucion de una
ecuacion diferencial parcial es mucho mas complicada, y soluciones de forma cerrada estan
disponibles para s6lo unos pocos sistemas continuos que tienen una geometria, condiciones

de frontera y excitaciones extremadamente sencillas [3]

Una vez contando los conceptos basicos de vibraciones en el siguiente capitulo se

procede con el desarrollo matematico de los casos de estudio.



PLANTEAMIENTO DEL MODELO
MATEMATICO

“Somos lo que hacemos dia a dia; de modo que la excelencia no es un acto, sino un habito.”

Avristételes

2.1. Membrana rectangular.

2.2 Membrana circular.
2.2.1 Respuesta a un pulso de onda.
2.2.2 Respuesta a un tren de onda.

2.3 Placa rectangular.




2.1  Membrana rectangular.

Una membrana es una ldmina delgada perfectamente flexible de espesor constante.

Para su analisis se consideran validas las siguientes suposiciones;

1) ElI movimiento de cualquier punto de la membrana es perpendicular al plano xy.
3) La tension es uniforme, es la misma en todos los puntos y en todas las
direcciones.

4) La membrana es flexible.

En este proyecto se eligen las geometrias de una membrana rectangular y una
circular [4-6], ya que es comUn de encontrarlas en aplicaciones tales como en el disefio de

microfonos, bombas, reguladores de presidn y otras aplicaciones acusticas.
Para obtener la ecuacion de movimiento se parte de las siguientes definiciones:
Considere la vibracion transversal en una membrana elastica extendida en dos

dimensiones, fig. 2.1. La posicion de equilibrio de la membrana se encuentra en el plano x-

y. Las fuerzas gravitacionales del cuerpo de la membrana se desprecian.

Fig. 2.1.-Elemento de la membrana sometida a tensién, P, [5].



La deflexion transversal medida w(x,y,t) es en la direccion del eje z. Aislando un

elemento diferencial de area dx por dy de la membrana, y visualizando a lo largo del eje y y

x se obtiene la fig. 2.2, w(x,y,t)= f(x,y,t).

daw 8 (D
dy " dy Gy, v/
P-dx

™
F]M+ d (dw dx

dur dx | ax \dx )

Seccion X5

Seccion VY,

Fig. 2.2.-Elemento infinitesimal de membrana sometida a tension [5].

Usando las leyes de Newton en la direccion z se tiene:

2 2 2

(2.1)

Dividiendo entre el diferencial de area, dxdy, la ec. (2.1) se puede reescribir como:

Ow ow 10w (22)
ox*>  oy* ¢® ot?
Donde C—— es la velocidad de propagacion de la onda. Note que P=

i

tension/unidades de longitud y p= masa/unidad de area. De la ec. (2.2) se observa que el



movimiento transversal de la membrana se gobierna por una ecuacién de onda de dos

dimensiones.

Usualmente las condiciones de frontera especifican cero amplitud en los puntos de

soporte de la membrana como ya se comentd anteriormente.

Para el analisis de la vibracion en una membrana rectangular se considera, que parte

del reposo, fig. 2.3, y que se tiene una deflexion inicial en el eje z.

1}’
AR AV BN A A A A AN A A Y
(0,b) 4 ’
[
/1 -
# L
E
y -
y ]
- -
|
. v
P i B i - X
(2,0)

Fig. 2.3.-Membrana rectangular con bordes fijos [7].

Para resolver el problema planteado en una membrana rectangular se empieza a

formular usando las coordenadas cartesianas.

1
Hw, + W, = — W,

C2
2) w(0,y,t) =w(a,y,t)=0
3) w(x,0,t) =w(x,b,t) =0 (2.3)

4) w(x,y,0) =F(x,y)
5) W(X,y,t) =0

Donde:
1) resulta de emplear una notacién equivalente para la ec. (2.2).
2) Es la condicién de cero amplitud del desplazamiento cuando x toma los valores 0

y a, para todo y de 0 a b, en un tiempo arbitrario.



3) Condicién de cero amplitud del desplazamiento cuando y toma los valores 0 y b,
para todo x entre 0 y a, en un tiempo arbitrario.

4) Se refiere que en un tiempo igual a 0, para cualquier valor de x entre 0 y a, y para
cualquier valor de y de 0 a b hay una deflexién inicial.

5) Para la combinacién arbitraria de x, y y t, la derivada de la amplitud de

desplazamiento es cero.

Usando el método de separacién de variables [8], se propone como solucion para

w(X,y,t):
w(X,y,)=F(xy)T(t) (2.4)
Al sustituir esta expresion en la ec. (2.2), se obtiene:

FT=c*(F, T+F,T) (2.5)

donde lo subindices xx y yy denotan derivadas parciales y los puntos denotan derivadas con

respecto a t, ahora dividiendo la ec. (2.5) entre c°FT:

T 1
== (F+F,) (2.6)
c’T F Y

Dado que el lado izquierdo de la ec. (2.6) solo depende del tiempo y el lado derecho
es independiente del tiempo, ambos miembros deben ser iguales a una constante; mediante
analisis se observa que valores positivos o iguales a cero asignados a esta constante
provocan que la solucidon de cero, por lo cual Unicamente valores negativos de esta

constante satisfacen las condiciones w=0 en la frontera de la membrana.

.

1
gor (Pt Fn) =y @7

10



De la expresién anterior, ec. (2.7), hay dos ecuaciones diferenciales ordinarias. Para

la funcidn de tiempo se tiene:
T+A*T=0, donde A=cv (2.8)
y para la funcién de amplitud se observa que ésta depende de dos variables espaciales x y y:
Fo+Fy +VF=0 (2.9)

conocida como la ecuacion bidimensional de Helmholtz. La separacién de esta ec. (2.9) se

logra separar proponiendo lo siguiente:
F(xy) =X(X) Y (y) (2.10)
que al sustituir en la ecuacion de Helmholtz, ec. (2.9), se obtiene:

0%X 0°Y
X2 V=X

+v2XY) (2.11)

Para separar variables, ambos miembros se dividen entre XY, encontrandose:

1 °X 1 ,0%Y

Los miembros de derecha e izquierda deben ser igualados a una constante, la cual

debe ser negativa por lo explicado previamente para la ec. (2.7).

2 2
X

11



Al separar la ec. (2.13) se obtienen dos ecuaciones diferenciales lineales ordinarias

para Xy Y:

0% X
ox?

+a’X =0 (2.14)

oY

2

+B2Y =0, donde p2 =v%—a? (2.15)

Ahora la ecuacion de desplazamiento se encuentra en términos de tres funciones,

por lo planteado originalmente en la ec. (2.4) y (2.10).

w(x,y,t) =X(x)Y(y)T(t)
X"+0°X =0
Y4B =0 (2.16)
T+(a?+B*)c*T=0

Donde a y B son constantes obtenidas al llevar a cabo el método de separacidon de variables.

Las soluciones de las ecuaciones diferenciales (2.4) son:

X =Asen(ax)+Bcos (ax)

(2.17)
Y =Hsen(By)+ Dcos(By)

T= Esen(c \Ja? +[32t)+ Fcos(c \Ja? +[32t)

En donde A, B, H, D, E y F son constantes arbitrarias que se obtienen a partir de las
condiciones de frontera y de las condiciones iniciales, las cuales se presentan en la ec. (2.3),

aplicando éstas se tiene que:

12



B=D=0, obtenido de la condicion dos y tres cuando x=0y y=0.

mmn

o=—73 m=12,.., cuando X =a de la condicion dos
a
nm .
B= F; n=12,..., cuando y =b de la condicion tres

E=0, se obtiene de la condicién cinco.

Consecuentemente sustituyendo las soluciones de las funciones X, Y y T para

obtener la solucion de w(x,y,t).

w(x,y,t) = ZZA cos{ nct\/ } sen (n?/) (2.18)

Por altimo, usando la condicion cuatro de la ec. (2.3):

F(x,y) = ZZA sen( . jsen(ngyj (2.19)

m=1 n=1
La ec. (2.19) representa una doble serie de seno de Fourier para f(x,y). De la teoria

de series de Fourier, los coeficientes pueden ser encontrados por las propiedades de
ortogonalidad [7]:

4 a
mn b!

o'——,o‘

f(§,m) sen ( a&j sen (ngnj dédn (2.20)
La frecuencia de la vibracion para este caso es [8]:

o _¢cm n (2.21)

13



En el caso de que a=b implica una no-unicidad de la frecuencia asociada a cada

forma modal, es decir ®mn=onm.

Una vez resuelta de la ec. (2.19) se completa la solucién para el movimiento de

vibracion libre de la membrana con geometria rectangular:

w(x,y,t) = iiAmn sen (manxj sen (n;cyj cos (wt) (2.22)

m=1 n=1

La forma de los patrones modales, provocados por ec. (2:22), se expone en la fig.
2.4, donde se observa cero deflexion en las llamadas lineas nodales (marcadas con las
flechas).

m=| n=2

Fig. 2.4.-Cuatro combinaciones de modos (m) y nodos (n) en una membrana

rectangular [7].

En la fig. 2.4 se eligié a x como la direccion modal, donde se presentan los modos, y
la direccién nodal, referida a los nodos, como y; se puede observar cuando m=1y n=1 (caso
simétrico) se refiere a una media onda a través de una membrana, cuando m=2 y n=1 (caso

antisimétrico), seria una onda completa en la direccion modal y media onda en la direccion

14



nodal (caso parecido a m=1 y n=2) y cuando m=2 y n=2 se tiene una onda completa en

cada direccion; en todos los casos mencionados se cumple la condicion de frontera.

2.2 Membrana circular.

Para este tipo de geometria se siguen usando los pardmetros de nodos y modos, pero
también son conocidos como circulos nodales y didmetro nodal respectivamente; donde el
valor minimo de n es 1, que seria la representacién de una media onda en la superficie de la
membrana. Pero a diferencia de la membrana rectangular, el valor de modo (m) puede
tomar el valor de 0. Esto lleva a que en la oscilacion de la geometria el centro no se

mantenga fijo, a diferencia de lo que ocurriria en el caso de m>0.

Para la membrana circular se emplea una ecuacion similar a la utilizada en la

rectangular (ec. 2.22), pero la diferencia fundamental es que consiste de un sistema radial

transversal que usa como variables espaciales a la coordenadas r y 6.

En la fig. 2.5 se muestran algunas representaciones de diferentes combinaciones de
modo y nodo [9], donde la parte sombreada de las figuras representan desplazamientos

negativos:

Fig. 2.5.- Modos de vibracion en una membrana circular (m,n) [9].
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2.2.1 Respuesta a un pulso de onda.

Para la simulacién de la respuesta a una excitacion de un pulso se considerara la

membrana con geometria circular.

Aungue existen diversas funciones de las formas geométricas que representan un
pulso de onda, por las restricciones fisicas de la membrana circular, debe ser una curva
suavizada y continua la que represente la excitacion que genere el pulso de onda. Ademas,
para simplificar el analisis, se elige el inicio de la excitacion en el centro de la membrana,

para tener una propagacion radial uniforme.

Para el pulso, fig. 2.6, se busco una ecuacion en la que se observe, el momento en
que inicia la excitacion de la membrana en el centro, como viaja de forma radial y
uniforme, y la forma en que el pulso desaparece al alcanzar el borde de la membrana
circular. Por tal motivo se selecciono la ecuacion de la funcion gaussiana para el centro, y

su forma sesgada, para el viaje y extincion de la onda.

La ecuacion se describe en las fases del impacto, viaje y extincién de la onda, con

su respectiva expresion, ec. (2.23).

Fig. 2.6.- Pulso de onda [10].
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f(r,t) =-A exp(-Gr?) (2.23)
Donde:
r es la posicion radial donde se localiza el pulso en la membrana circular.
A, es una variable que representa la amplitud del pulso, que depende de la posicion
y del tiempo.
G controla que tan rapido la amplitud toma el valor de cero en el extremo del pulso.
El signo negativo antes de A, solo es un arreglo para que el impacto, el viaje y la

extincion de la onda, se produzca en la parte negativa del eje z.

En el impacto, la forma de la ec. (2.23) se ajusta de manera que el punto central se
mueve, hasta alcanzar la amplitud de desplazamiento maximo, mientras todos los puntos en
cada una de las direcciones radiales se mueven de acuerdo a la ecuacion mientras el tiempo

varia, fig. 2.7.

Impacto

Amplitud de desplazamiento maximo
[unidades de longitud (desplazamineto)]

20 i i i i i
0 10 20 30 40 50 60 70 80 90 100
Eje radial de la membrana circular [unidades de longitud (posicion)]

Fig. 2.7.- Ecuacion de impacto representado en diversos tiempos, grafica obtenida con
Matlab.
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En el pulso viajero de onda, fig. 2.8, el ajuste que se hace en la ecuacidn es con

respecto a la forma de una onda viajera, es decir, r =r —vt; donde r es la coordenada

referida a un marco de referencia que se mueve junto con la onda con una rapidez v,y r es

la coordenada referida a un marco inercial fijo.
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10 20 30 40 50 60 70 80 90 100
Eje radial de la membrana circular [unidades de longitud (posicion)]

Fig. 2.8.- Ecuacion de pulso viajero, mostrando diversos tiempo, grafica

obtenida con Matlab.

Finalmente, para la extincién de la onda, se busca que la amplitud decrezca, pero

que la onda siga viajando, ya que al trabajar con la ec. (2.23), no se logré alcanzar la

amplitud de desplazamiento cero en el extremo de la direccion radial, con una sola

ecuacion, se decidio seccionar en dos partes, empleando la misma ec. (2.23).

Una primera parte, que continua con el movimiento previo de la onda viajera, fig.

2.8; y la otra parte para alcanzar la amplitud de desplazamiento cero. Sin embargo, fue

necesario asignar parametros diferentes para cada parte en la ec. (2.23) para que no se

apreciara el cambio al unirlas, obteniendo una funcién seccionada, en la que el punto de
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unién corresponde al pico para cada una de las graficas en funcién del tiempo que se

muestran en fig. 2.9.

Amplitud de desplazamiento maximo
[unidades de longitud (desplazamineto)]

| ‘ i i i i i
10 20 30 40 50 60 70 80 90 100
Eje radial de la membrana circular [unidades de longitud (posicion)]

20 1 1
0

Fig. 2.9.- Ecuacion de extincidn del pulso, mostrando diversos tiempos, gréafica

obtenida con Matlab.
2.2.2 Respuesta a un tren de onda.
Para esta parte se empled la ec. (2.23) con los parametros empleados en la parte
correspondiente al impacto en el pulso de onda y después para el viaje de la onda se

represento con la ec. (2.24), con la finalidad de que después del impacto la onda se repitiera

de forma continua, sin desaparecer, por lo que se utiliz6 la funcién periddica, fig. 2.10.
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Amplitud de desplazamiento maximo
[unidades de longitud (desplazamineto)]

Donde:

2.3

20
0

20

Tren de onda

10 20 30 40 50 60 70 80
Eje radial de la membrana circular [unidades de longitud (posicion)]

Fig. 2.10.- Viaje de la onda, grafica obtenida con Matlab.

f(r,t)=—A,sen (kr—vt)

A, es la amplitud de la onda

k es una constante que controla la longitud de onda

Placa rectangular.

(2.24)

Una placa es un cuerpo sélido limitado por dos superficies. La distancia entre las

dos superficies define el espesor de la placa, fig. 2.11, que se supone que es pequefio en

comparacion con las dimensiones laterales, tales como la longitud y anchura en el caso de

una placa rectangular y el diametro en el caso de una placa circular [3].

La vibracidn de las placas es importante en el estudio de los sistemas practicos, tales

como cubiertas de puentes, estructuras hidraulicas, tapas de recipientes a presion,

pavimentos de carreteras y pistas de aeropuertos, las cubiertas de buques, aviones, misiles y

piezas de la maquina [3].
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Fig. 2.11.- Borde inclinado de una placa, fuerzas de corte y momentos resultantes [3].

Para una placa simplemente apoyada en

satisfacer las siguientes ecuaciones:

sus lados las condiciones de frontera deben

w(xy,t)=M,(X,y,t)=0 for x=0and a (2.25)
w(x,y,) =M (x,y,t)=0 for y=0and b

en un t>0, fig. 2.11, donde M son los momentos resultantes; y w(x,y,t) es la amplitud del

desplazamiento, que es funcién de F(x,y) y T(t), reescribiendo de esta manera las

condiciones:
F(O,y)=0 (S;IZ:JrVS;E) l0yy=0,
Fen =0 (GEvE D=0 020
F(x,0) =0 (j;f +vj;f) ooy =0,
F(0,b) =0 ((ﬁfwg;)hx,b):o’
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Como F es constante a lo largo de los bordes x=0 y x=a, d*F/dy” sera cero a lo largo
de estos extremos, similarmente d?F/dy? sera cero a lo largo de los bordes de la placa y=0'y
y=b. Entonces la ec. (2.26) puede simplificarse como:

d?F d?F
FO,y) = 42 Oy)=F@,y)=-—-(@y)=0
X dx
d*F d’F (227)
De la teoria [3] se toma la solucion de la funcién F(x,y):
F(x,y) =A;sen(ax)sen(By) + A,sen(ax)cos(By) +
(2.28)

+ A, cos(ax)sen(By) + A, cos(ax) cos(By) +
+ A senh(0x)senh(¢y) + A senh(0x) cosh(oy) +

+ A, cosh(6x)senh(¢y) + A, cosh(6x) cosh(dy) +

Aplicando las condiciones de frontera, se encuentra que las constantes A,

exceptuando Aj, son cero, adicionalmente se obtienen dos ecuaciones que o y B debe
satisfacer:

sen(aa) =0
2.29
sen(Bb)=0 ( )
Entonces la solucidn de la ecuacién F(x,y) es:
F(x,y) =A,sen (manx} sen (nng (2.30)

A la ec. (2.30) se le agrega la solucion a la funcién T(t), para obtener la ecuacion de
amplitud de desplazamiento:
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w(X,y,t) =sen (m;cxj Sen (nng [Acos (ot) + Bsen (wt)] (2.31)

Donde A y B son constantes que dependen de las condiciones de frontera de placa.

Se observa la similitud entre la ec. (2.31) con la ec. (2.22) para la membrana rectangular.

La diferencia esencial entre vibracion de una membrana y una placa delgada es que
en una membrana la fuerza restauradora se debe por completo a la tension aplicada a la
membrana, en tanto que en la placa delgada la fuerza restauradora se debe por completo a
la rigidez flexionante de la placa, cuando no se aplica tension. Esta misma diferencia existe

entre las fuerzas restauradoras en cuerda y barras.

Para la simulacién de placa se tom6 en cuenta la construccién con su espesor,
aunque las dimensiones de la superficie con respecto a su espesor son mas grandes, y la

restriccion impuesta es que se mantenga fijo el borde, fig. (2.12a).

En el caso donde se tiene que solo un punto es fijo en el borde (una linea de la
seccion trasversal), fig. (2.12b), el area de esta seccion es perpendicular al plano x-y, y se
mueve de manera que es siempre normal a la tangente de la curva que describe el

movimiento de los puntos sobre la superficie.

23



N\
N
!
/)
/)

v/

(@)

el N
/ e

B
s
e
4\(

NP

(b)

Fig. 2.12.- Seccion transversal de la placa; a) area de extremo fijo, b) unalinea fijaen

extremo.

Teniendo la metodologia referente a cada caso de estudio se procedio a aplicarlo en
la plataforma de ADEFID para llevar a cabo las simulaciones requeridas.
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3.1

3.2

3.3

3.4
3.5

SIMULACION EN ADEFID

“Debes tomar tu trabajo en serio, pero no a ti. Ksa es la combinacién perfecta.”
Judi Dench

Introduccion

Membrana rectangular.

Membrana circular.

3.3.1 Excitacién con un pulso (o respuesta a un pulso).
3.3.2 Respuesta a un tren de onda.

Geometria placa rectangular.

Simulacién en ADEFID.




3.1 Introduccién

Debido a la dificultad de comprender y visualizar la apariencia que tendria una
superficie bidimensional sometida a vibracién en ambas direcciones, se busca implementar
una herramienta de simulacién computacional mediante la cual se pueda observar los
diferentes modos de vibracion de la superficie. EI médulo a desarrollar debera contar con la

opcidn de manipular los pardmetros que definen la construccion geométrica que se genera.

Para representar los diferentes modos de vibracion en membranas y placas, la
respuesta de una membrana a la excitacion de un pulso y a un tren de onda en un entorno
que fuera interactivo con el usuario se emplearon instrucciones de Visual Studio® C++
[11]. Con este propdsito se implementaron ciclos para la evaluacion en cada punto del
mallado de las funciones solucion que nos presentan la amplitud de desplazamiento; y
estructurado con los conceptos de programacion orientada a objetos para la construccion de
las superficies correspondientes a cada caso, asi como la presentacion de éstas en el

monitor.

Estos programas fueron adaptados en los moddulos VIBRATO [12-13];
implementados con las librerias de ADEFID [1] que se han desarrollado para la simulacion

de fendmenos vibratorios.

3.2  Membrana rectangular.

La forma en la que se conceptualizd la representacion de la superficie de la
membrana rectangular fue mediante el uso de la herramienta de GL POLYGON [14], que
gracias a ésta, Unicamente es necesario definir los vértices de poligonos que se asignan
mediante ciclos for anidados [11], el mallado se considero dividido en elementos

agrupados en filas y columnas.

Para el primer ciclo se utilizan las variables i y j, donde j es el j-ésimo elemento de
la columna creada por el ciclo, fig. 3.1, el cual define la longitud de la placa e i permite

moverse dentro del elemento, por lo cual solo varia de 0 a 1, por lo que i crea el cuadrado
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base y j lo repite en una direccion, creando asi una tira cuadriculada (esto se controla
mediante un ciclo for de i dentro de un ciclo for de j).

0.1

[ ]

(L1

r

(0.0) " (1,0)
Fig. 3.1.- - ésimo poligono.

Para el ancho se establece la variable k, con la cual se hara un tercer ciclo for, fig.

3.2, en el cual estan incluidos el de iy j, asi se genera la superficie.

(e-1.) (k.j)

(-1j-1) (kj-1)

Fig. 3.2.- Cuadricula de la superficie.
Una vez obtenida la superficie, es necesario hacer un arreglo para que cada vertice

tenga el valor correspondiente de amplitud en el eje z, para esto se usa la ec. (2.22), donde

el arreglo mencionado se debe hacer en el argumento de las funciones que incluyen las
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variables espaciales. Debido a que se debe establecer la ecuacion para cada punto de la
cuadricula (vértice), la ecuacion de desplazamiento esta dentro del ciclo de i y se presenta a

continuacion:

w(x,y,t) = Aosen[nm(::k)}sen(n?j cos(mt) (3.1a)

w(x,y,t) = Aosen[W}sen[W} cos(ot) (3.1b)

Donde (i+k)/K y j/J de la ec. (3.1a) es el arreglo que corresponde al uso de
coordenadas de cada vértice, y (j+1)/J de la ec.(3.1b) corrige la posicién de dos de los

vértices del k- ésimo elemento, tomando asi la coordenada que le corresponde, fig. 3.3.

(k.j)

Fig. 3.3.- Un elemento de la superficie en el espacio.
Una vez terminada la construccion de los elementos de la superficie de la

membrana, fig. 3.3, se prosigue con la simulacion de la vibracion sobre la membrana

circular.
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3.3 Membrana circular.

Para la construccion de esta geometria se sigue una metodologia similar a la de
membrana rectangular, pero en vez del uso de columnas y renglones, es mediante anillos y
sectores dentro de éstos. Al generar cada uno de los sectores internos del primer anillo del
circulo hay una coincidencia de posicion en dos puntos, por lo que la funcion

GL POLYGON genera una figura triangular, como se muestra en fig. 3.4:

(1,2j7/p) (1,2j/p)

(0,2im/p) V' (0,0)
Fig. 3.4.- Poligono base del centro de la superficie circular.
Una vez realizado el centro, el ciclo continda generando los siguientes anillos de la
superficie, pero ahora la geometria es trapezoidal, como se muestra en la fig. 3,5, donde p

es el nimero de particiones escogido.

(2,2jm/p) (2.2in/p)

(1.2jn/p) (1,2jm/p)

Fig. 3.5.- Primeros elementos de un sector circular.

28



Al definir el namero de sectores (p) se debe considerar la semejanza con un circulo,
por lo cual en esta parte se fue probando con diferentes valores hasta encontrar el mas
adecuado para generar el contorno circular deseado. Este control se realiz6 a través de la
variable discretizada j; mientras que el control radial del ciclo se realiz6 mediante la
variable k, la cual podrd modificarse cuando el usuario quiera definir el diametro de la

membrana.

En vista de que se utiliza a un sistema de coordenadas radial-transversal, (r, 0); se
debe hacer un cambio al sistema cartesiano para el uso de la funcion glvertex3f ( x,

v, z) [14], por lo cual se usan las transformaciones siguientes:

X =0.01(r + k)R cos 0 (3.29)
y = 0.01(r + k)R sen6 (3.2b)

donde @ = 12;]3 debido a que el nimero seleccionado de sectores (p) es 128, ya que

con un valor menor no se aprecia una circunferencia, y un valor mayor solo representaria

complicaciones a la hora de ejecutar toda la geometria.

x:0.0l(r+k)Rcos(e+nj (3.32)
64

3.3b
y=0.01(r+k)Rsen(e(;nj (3.30)

Como se puede observar en las ecuaciones (3.2) y (3.3), la unica diferencia entre
éstas son en los argumentos de las funciones trigonométricas. La ecuacion (3.2) se refiere al
inicio del sector y la ecuacion (3.3) al final del sector, y debido a que cada uno de estos
tiene un valor de n/64, esta cantidad se le suma al argumento del ultimo par de ecuaciones.
A su vez; para controlar los sectores se usa la variable discretizada r, que toma valores de 0
alydelaO.
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Una vez generada la superficie se procede a implementar las ecuaciones de amplitud
de desplazamiento, en este caso son cuatro ecuaciones a considerar, que parten de la forma
de la ec. (2.22). Asi, la primera ecuacion en cada par corresponde al caso cuando el valor
del modo (m) es igual a cero, donde se observa en las ecs. (3.4a) y (3.5a) que el argumento
de la funcion seno es (n-0.5). El desfase en el argumento es debido a que sin este arreglo al
simularlo no se formaria la curva de la onda en la superficie, es decir el centro de la

membrana tendria cero desplazamiento:

primer sector:

m=0

n(r +Kk)

w(r,0,t) = A, sin _(n —-0.5) + n} cos (wt) (3.4a)

m#0

w(r,8,t) = A, sin _nn(::k)}sen (M) cos (ot) (3.4b)

segundo sector:

m=0

w(r,0,t) =A,sin [(n —0.5) n(rlz K)

+ n} cos (wt) (3.58)

m#0
w(r,0,t) = A, sin [nn(wk)}se{m(e N ’fﬂcos (o) (3.5h)
K 64

En el segundo sector la Unica diferencia es en el argumento de los senos, y esto es

debido a lo mencionado en la formulacion de la ec. (3.3).
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3.3.1 Excitacién con un pulso (o respuesta a un pulso).

La construccion de la superficie circular es la ya explicada anteriormente, ahora
para la simulacion de el pulso se requieren las 3 etapas mencionadas en la seccion 2.3, en
donde las diferencias de cada una de estas etapas reside en las ecuaciones de amplitud de
desplazamiento, que dependen en que instante de tiempo se encuentra la simulacién para

entrar en accion.

Para la simulacion en el momento del impacto se parte de la ec (2.23), donde los
términos A, y Gr? se re-escriben para ajustarse al rango de amplitud de la simulacién vy al
tiempo en el cual transcurre ésta, de aqui se obtiene la ec. (3.6); por ultimo se da un periodo
en el cual esta ecuacion controle la simulacion, se toma como un tiempo inicial iguala0 sy

el tiempo final <1.6 s.

w(r,t) =—0.625A_texp [bb] (3.6)

bb = —0.01(r + k)?

El argumento, bb, de la funcién exponencial engloba la forma con la que tiende a
cero la funcién con el valor arbitrario de 0.01 se controla esta tendencia y con r+k se
controla la de posicion radial. La constante de 0.625 Unicamente es un control que actua
con el tiempo para asegurar llegar al valor de amplitud de desplazamiento maxima

establecida a la hora de la simulacién.

Una vez transcurrido el periodo de tiempo asignado para la simulacion del impacto,
se continua con la simulacion para el viaje de la onda, donde el tiempo inicial es mayor a

1.6 s (se debe a que es el tiempo final del impacto) y el tiempo final <4.8 s.
bb =-0.01[r + k —v(t-1.6)]°
w(r,t) =—A_ texp [bb] (3.7)

El cambio en el valor del argumento bb es debido a que la onda no se considera que

inicia en el origen (centro del circulo), sino, desde una posicion trasladada respecto al
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origen, como se ilustra en la fig. 3.6, durante este periodo de tiempo la amplitud permanece

constante, la correccion necesaria es el periodo de tiempo que dura el impacto.

¥ ¥

;— "_:f_.l v
[E——

.'“

E’ } X ,lr ] X

(a) =0 (b) t

Fig. 3.6.- Representacién de una onda viajera [10].

Finalmente la simulacion de la etapa de extincién de la onda ocurre con un tiempo

inicial mayor a 4.8 s (tiempo final del viaje de la onda) y tiempo final <6.4 s.

bb =—0.01[ 1.1 (r + k) —78.5— v (t — 4.8)]2

w (r,t) = —0.625A, (6.4 —t) exp (bb) (3.8)

bb=-0.01[2(r + k) —145— v(t —4.8)]2

w (r,t) =—0.625A, (6.4 —t)exp (bb) (3.9)

Para esta parte de la simulacion se secciona en dos partes la ecuacion que gobierna
este periodo de tiempo, seccion 2.3, donde la ec. (3.8) es el viaje de la onda, y la ec. (3.9) se

encarga de contrarrestar esa onda, formando asi la extincién del pulso. Las constantes que
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aparecen en la ecuacién fueron obtenidas mediante prueba y error para ajustar la simulacion

(salto de un movimiento a otro, tiempo de extincion, etc.).

3.3.2 Respuesta a un tren de onda.

Para la simulacién en esta parte se trabajo sobre la superficie de la membrana
circular, utilizando para la ecuacién de amplitud de desplazamiento una funcién senoidal
para la mayor parte de la simulacién. Sin embargo para el inicio se define un tiempo de 0 s
a 1.6 s en el cual se realiza un “impacto” en el centro de la superficie, el cual representa el
inicio de la excitacion, y debido a esto se emplea la ec. (3.6), transcurrido este periodo la

ec. (3.10) es la que rige la simulacién.

w(r,t)=—A,sen [0.1(k+r)—vt+0.57] (3.10)

Donde el valor de 0.1 es debido a la longitud de onda y 0.57 es el desfasamiento.

3.4  Geometria placa.

Debido a que en el médulo de placa se debe apreciar los modos de vibracion en
ambas superficies, para la construccion de la geometria se partié de un paralepipedo, con
las caras de los bordes de éste simplemente apoyados.

Para las superficies, superior e inferior de la placa, se emplea el cddigo realizado
para la membrana rectangular, pero habiendo una diferencia entre este codigo y el
requerido para la placa. En este caso la funcion glvertex3f (x, vy, =z) para la
superficie superior debe modificarse en el valor de z, ya que este pardmetro debe

representar la amplitud de desplazamiento considerando el espesor que separa ambas
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superficies, por lo que se suma el espesor deseado en la placa, como se muestra a

continuacion:

glvertex3f (0.01*b*i, 0.02*d*j, 2);

glvertex3f (0.01*b*i, 0.02*d*(j+1), z+espesor);

Donde los productos que se observan en las posiciones de X y y, se usan Unicamente

para lograr el trazado de cada elemento de la superficie.

35 Simulacién en ADEFID.

Una vez concebida la metodologia para llevar a cabo la representacion de las
superficies (membrana y placa) que serdn sometidas a vibracion, el siguiente paso fue
implementar la simulacion en la plataforma ADEFID. En primer término se requiere definir
(o generar) un proyecto, en el caso de este trabajo se contaba con un proyecto previo
nombrado VIBRATO, en el cual ya se analizan y simulan la vibracién de sistemas de unoy

dos grados libertad, asi como la vibracion en cuerdas.

Sobre el proyecto ya existente se definieron las clases CMembrane y CPlate
como clases derivadas de CMachine. A su vez, por cada clase definida se generan los

archivos de trabajo "*.h" y "*.cpp”.

En el documento Membrane.h se definen todas las variables utilizadas en el control
de la simulacion, las cualessonm time 0y t pausa, la primera se encarga de guardar
el tiempo en que se inicia la simulacion y la segunda guarda el valor de tiempo que lleva
suspendida la animacion . También se declaran en el archivo .h las funciones utilizadas para
construccion de la geometria como lo son DrawGeometry () que guarda el algoritmo
correspondiente a los casos de la membranay DrawPulse () que construye el pulso y el
tren de ondas, las cuales serdn llamadas en la funcién RenderUScene (), la cual se

encarga de presentar al usuario la construccion hecha.
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Para el mddulo de la placa se definieron los archivos Plate.cpp y Plate.h, que
guardan similitudes en su conformacion con los de membranas, la diferencia radica en que

solo usa una funcion de dibujo para construir la placa.

El algoritmo implementado, fig. 3.7, para la formacién inicial de cada superficie de los

casos se representa con el siguiente diagrama de flujo.

( Inicio

Rectangulo
k=0, =0

Se crean 4

vertices k=k+1
!

=itl

Si

Fig. 3.7.- Diagrama de flujo de la membrana rectangular.
Donde k=100 y j=50 son valores seleccionados de pruebas para que se apreciara la

curva suavizada de la onda. La fig. 3.8 representa la primera columna denotada por el ciclo

de j.
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Fig. 3.8.- Primer ciclo de la formacién de la membrana rectangular.

Una vez implementado el coédigo correspondiente al diagrama de flujo en el
programa se obtiene la superficie deseada, fig. 3.9, cabe mencionar que para la membrana

circular se sigue el mismo algoritmo mostrado en la fig.3.7.

Fig. 3.9.- Construccion final de la malla de la membrana rectangular.
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Una vez teniendo la superficie de trabajo se prosigue con la implementacion en el
cadigo de la ecuacion de amplitud de desplazamiento, para que al correr la simulacion la

superficie tome la forma requerida, en fig. 3.10 se observa una prueba inicial de este paso.

Fig. 3.10.- Modelo geométrico final.

En la fig. 3.11 se muestra uno de los resultados de la membrana circular al variar el
namero de divisiones para la circunferencia y el nimero de poligonos que se crean en la
superficie. Como se observa la geometria que se genero se alejaba del resultado deseado.
Debido a lo anterior se aumentd el nimero de divisiones empleadas, hasta llegar al
resultado mostrado en la fig. 3.12, la cual también representa la apariencia de la membrana

una vez afadida una de las ecuaciones de desplazamiento que rige este caso.
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Fig. 3.11.- Primera seleccion de divisiones para membrana circular.

Fig. 3.12.- Superficie final de la membrana circular.
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Teniendo la geometria se prosigue en la representacion visual de la oscilacion (tanto
para el caso de membrana como el de placa), para lo cual se idearon dos opciones de
presentacion. La primera consta de un control de color que permite que la onda tome dos
diferentes colores dependiendo si sus valores de amplitud son positivos 0 negativos, esto

con el fin de mostrar los valles y picos formados por la vibracion.

Las figuras 3.13, 3.14, 3.15 y 3.16 muestran la forma final que toman las geometrias
de las membranas y la placa seleccionando la primera opcion de la simulacidn, el resultado
final es una representacién tridimensional de dos medios continuos sometidos a vibracion,
donde es facil apreciar la configuracion que toman al manipular los elementos que influyen

en Sus respuestas.

Fig. 3.13.- Membrana rectangular primera opcion.
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Fig. 3.14.- Membrana circular primera opcion.

Fig. 3.15.- Tren de onda primera opcion.
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Fig. 3.16.- Placa primera opcion.

En el caso de la excitacion de un pulso no se empleo el mismo arreglo que genera la
coloracion visualizada en las figuras mostradas anteriormente, esto es debido a la forma de
la ecuacion planteada, la cual provoca que los valores de amplitud sean negativos. Ya que
el arreglo original se realiz6 de manera que la funcion glColor3f [14] cambie su
configuracion cuando el valor de la amplitud varié, en el pulso esta variacion esta
restringida Unicamente a dos opciones, las cuales muestran la onda viajera de un color

diferente a la superficie que se mantiene sin movimiento, fig. 3.17.
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Fig. 3.17.- Pulso con controlador de color.

La segunda opcion de presentacion es mediante las normales geométricas de la
estructura simulada, para lo cual se calculo la normal en cada vértice de la superficie. La
fig. 3.18a muestra un elemento de la superficie rectangular que sirve de base para el calculo
de las normales. A su vez la fig. 3.18b muestra la orientacion de cada vector z, que es

requerido para realizar el calculo ya que representa la ubicacion espacial de cada vértice.

[ ) pva[2] < S pvn[3]
(0.1) (1.1) (0.1.Z0.1)  (1.1.2a. 1)
¥ 'y 22 l T 23
(0.0) (1.0) (0.0.Z(0.0)) (1.0.Z(1,0))
1 ' * —e -+
pvn[0] Tlr pvn[1]
a) b)

Fig. 3.18.- Normales de un cuadrado, a) vertices de un cuadrado, b) posicion de los

puntos de los vectores normales (pvn[]).

Para el desarrollo del calculo de las normales se empieza por definir el cambio de la

posicion en dos direcciones, representados con AX y Ay:
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AX = L Ay = 5d donde b es la longitud de la superficie y d es el ancho de ésta.

100

Se definen las variables A, B, C, D, E, F, G y H, lo cual servira para representar con

mayor facilidad las componentes del vector z.
A=AX, B= Az;, C= Ay, D= Azy, G=A, E=C, F= Az3, H= Az4

Donde los Az se refieren al cambio en el eje z entre cada vértice, siguiendo el orden
mostrado en la fig. 3.18b, los puntos del vector normal (pvn[]) guardan los valores

resultantes de la ecuacion de amplitud de desplazamiento durante la simulacion.

Az;=pvn[1]-pvn[0]
Az,= pvn[2]-pvn[0]
Azz= pvn[3]-pvn[1]
Az4= pvn[3]-pvn[2]

Las componentes de cada vector z, fig. 3.18b, son:
z,=Ai + Bk
z,=Cj+ Dk
z,=Ej+Fk

z,=Gi+Hk

Teniendo estas expresiones se procede a realizar los productos cruz

correspondientes a cada vértice para obtener las normales.
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Primer vértice:

i k
) 0O Bl. A B, A O
z,x2,=A 0 B|= - j+ k
CcC D 0O D 0 C
O C D

Segundo Vértice:

Tercer vértice:

v, =2,x2, =—BCi - ADj+ ACk

n,[0]=—-BC =-0.02d{pvn[1] — pvn[O]}
n,[1]=—-AD=-0.01b{pvn[2] — pvn[O]}
n,[2] = AC=(0.01)(0.02)db

i ] k
J O B. A Bl. A O
z,xz;,=A 0 B|= i — j+ k
E F 0O F 0 E
0 E F
vV, =2,x2Z, =—BEi — AFj+ AEK
n,[3] =—-BE =-0.02d{pvn[1] - pvn[0]}
n,[4] = —-AF=-0.01b{pvn[3] - pvn[l]}
n,[5]= AE = (0.01)(0.02)db
i j K
0O H, G H, |G O
Z4><Z3:G O H:E I:|_O FJ_|_O £
0O E F

v, =2,x2, = —HEiI —GFj+ GEk

n,[6]=—HE =-0.02d{pvn[3] - pvn[2]}
n,[7]=—-GF=-0.01b{pvn[3]—pvn[l]}
n,[8]=GE = (0.01)(0.02)db
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Cuarto vértice:
;
z,x2, =G
0

0O H
C D

G H
0O D

a
— I _

+
JOC

. IGO0

O O —
OI

v, =2,x2, =—CHi—GDj+ GCk

n,[9]=—-BE =-0.02d{pvn[3]—pvn[2]}
n,[10] = -AF=-0.01b{pvn[2] — pvn[O]}
n, [11] = AE = (0.01)(0.02)db

Una vez teniendo los calculos requeridos para las normales se afiaden en el
algoritmo que genera las construcciones mostradas en las figuras 3.19 y 3.20, las cuales
aunque presentan una visualizacion de la superficie con mayor detalle, provocan mas

tiempo de procesamiento debido a la iteracion de las ecuaciones.

Fig. 3.19.- Membrana rectangular segunda opcion.
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Fig. 3.20.- Placa segunda opcion.

En el caso de la geometria circular, se debe realizar un nuevo calculo de las
normales, fig. 3.21, conservando Unicamente los vectores pvn[] definidos anteriormente

para los Az.

Fig. 3.21.- Normales de un poligono.
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Primero se definen los cambios en las coordenadas radial y transversal:
7T . .
Ar=_—, AO= 64’ se prosigue con los Ax, Ay y As, donde los dos primeros son
cambios en coordenadas cartesianas y el segundo se refiere al cambio en la longitud de

arco.

A X=Arcos0,, A,Xx=Arcos9,
Ay = Arsenf,, A,y = Arsen0,
AS=1A0, A,y =(r, +Ar)A6

r, = KAr, donde la k es el nimero de divisiones en la direccion radial.

Los angulos, a, B, 6, estan definidos por:

a: —_— — ’ﬂ:
2 2 128
65
B=128"
0, =0, + A0

Para obtener las componentes de los vectores z primero se establecen las siguientes
variables:

A=0.01R cos 9,

B =0.01R sen0®,

C =0.01Rkcos(9, + )

D= 0.01Rksen(06, +B)

E =0.01R (k +1) cos(6, + )
F=0.01R (k +1)sen(6, +B)
G =0.01Rcos0,

H =0.01R sen®,

Una vez teniendo esto, representar las componentes es mas sencillo.
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z,= Ai +Bj+Az,k
z,=Ci+Dj+Az,k
z,=Ei+Fj+Azk
z,=Gi+Hj+Az,k

Primer vértice:

i j kK
) B Az,. A Az,, A B
z,x2,=A B Az, |= — j+ k
D Az, C Az, C D
C D Az,

v, =2,x2, =[BAz, — DAz,]i +[CAz, — AAz,]j+[AD - CB]k
Asignando ahora los componentes del vector normal:

n,[0]=BAz, — DAz,
n,[1]=CAz, — AAz,
n,[2]=AD-CB

Segundo Vértice:

B Az,
F Az,

A Az,
E Az,

a

]+

N W —

i
Z,x2, = A Az, | =
E

AZ,

. A B

vV, =2,%x2, =[BAz, —FAz,]i +[EAz, — AAzZ,]j+[AF—-BE]k

n,[31=BAz, —FAz,
n,[4]=AAz, —EAz,
n,[5]= AF - BE

Tercer vértice:
i

H Az,
z,x2, =G -
E

: G Az,
F Az,

AZ,| =
E Az,

Az,

n T

. |G H
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vV, =2,x2, =[HAz, —FAz,]i +[EAz, — GAz,]j+[GF—-EH]k

n,[6]=HAz, - FAz,
n,[7]1=EAz, — GAz,
n,[8]=GF—-EH

Cuarto vértice:

i J kK
) H Az,. G Az,l, G H
2,x2,=1G H Az, = i— j+ k
D Az, C Az, C D
C D Az,

v, =2,%x2, =[HAz, — DAz,]i +[CAz, — GAz,]j +[GD - CH]k

n,[91=HAz, — DAz,
n,[10]=CAz, — GAz,
n,[11]=GD-CH

Obteniendo las relaciones necesarias para las normales, éstas se implementan en el
codigo para los casos de membrana circular, pulso y tren de ondas, obteniendo asi lo

mostrado en las figuras 3.22 a la 3.24, donde su implementacion mejora la calidad de la
representacion visual de la simulacion.

Fig. 3.22.- Membrana circular segunda opcion.
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Fig. 3.23.- Pulso segunda opcion.

Fig. 3.24.- Tren de ondas segunda opcion.

Como se menciona al principio de esta seccion las variables encargadas de controlar
la simulacion son m time O Yy t pausa, la primera permite empezar la simulacion
guardando el tiempo en el que se selecciona el boton de inicio, la segunda variable actla

Unicamente cuando el usuario selecciona la opcién de salida
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En el siguiente diagrama de flujo, fig.3.25, se presenta el funcionamiento interno de
estas variables y su accion en los tres estados de la animacion. El primer estado lo define
PIN que es el inicio de la simulacion, luego la instruccion SUSPEND detiene la animacion
y reinicia a la posicion de un tiempo igual a cero, y finalmente POUT detiene la simulacion
en la dltima posicion mostrada. Gracias a la variable t pausa guarda el valor trascurrido
después de seleccionar la opcion, logrando asi al volver a presionarlo que muestre la forma

de la imagen en ese instante.

GetState=—=0pcion A t=mevo B

. time 0=t de sist l =nuevo tiempo del
(_ Inicio A=PIN B=SUSPEND £THepe Ce Sistena sits -time_0

BJ-

Resetea -= t=0

B GetState=—=0pcion
— +
B=SUSPEND C=POUT

c t_pausa=tiempo de sistema

transcurrido

l

t=t_pansa-time_0 —(@

Fig. 3.25.- Diagrama de flujo para la animacion.

( Fin

Para concluir con el programa y hacerlo amigable al usuario se requirié crear los
cuadros de dialogos, fig. 3.26, fig. 3.27 y fig. 3.28, que permitiran al usuario interactuar con
la interfaz grafica. En este caso se contd con la metodologia mencionada en Pefia [15], en la

cual detalla paso a paso la creacion de estos cuadros.
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Rectangular Circular
[ !
B 1 1
Caler U Marmal Caler D Marmal
Lenaht |_ 0.1
J Radius D 0.1
Width I 0.1
Modo D ] Diameter Nodal
Nodo D 1 Circle Nodal
Amplitude D 0
Frequency D 0

Fig. 3.26.- Cuadro de dialogo de membranas.

En la fig. 3.26 se observa el cuadro de didlogo que permite la interaccion del usuario
con las variables para simulacion de la vibracion en membranas, donde la primera opcion
permite escoger sobre que geometria (rectangular o circular) se desea trabajar; una vez
seleccionada, la siguiente seleccidn sera en qué forma se desea que aparezca la geometria,

si con los controladores de color o con las normales geométricas.

Las siguientes opciones se refieren a las caracteristicas que se desea en cada
geometria, longitud, ancho en el caso de la membrana rectangular y radio en la membrana
circular; terminada esta seleccion, se prosigue con los parametros de vibracion; frecuencia,

amplitud y lo méas importante el nimero de nodos y modos que se desea visualizar.
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Train of wave

Mormal

Radius D

Amplitude D

Frequency D

Fig. 3.27.- Cuadro de dialogo de pulso y tren de ondas.

La estructura del cuadro de dialogo mostrado en la fig. 3.27 empleado para el pulso
y tren de onda se asemeja al de la fig. 3.26, la obvia excepcion de que solo considera el
caso de la geometria circular y ademas no depende del nimero de nodos y modos para las

caracteristicas de su simulacion.
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Lenght

Width

Amplitude

Frequency

Modo

Modo

Thickness

I
I
I
I
i
i
I
I

Fig. 3.28.- Cuadro de dialogo de placas.

El funcionamiento del cuadro de dialogo para la placa, fig, 3.28, permite la
construccién de la superficie rectangular mediante la seleccion de los parametros
geométricos de longitud y ancho, agregando la opcion de variar el espesor de ésta y
también incluye la opcion para modificar las caracteristicas de vibracién como; amplitud,
frecuencia, nodos y modos, que influyen en la forma que tomara la superficie en la

simulacion.

De esta forma se ofrece una herramienta de simulacion interactiva con el usuario y
de facil manejo que permite una visualizacion clara del fendmeno de vibraciones en medios

continuos como membranas y placas.

En el capitulo siguiente se presentan los resultados de las diferentes simulaciones

que fueron implementadas en la plataforma ADEFID.
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RESULTADOS

“'Nada se me ha dado facilmente, pero no me importa el sacrificio si
con él puedo alcanzar el resultado apetecido.”
Maria Callas




Aplicando los conocimientos sobre la teoria de vibraciones mecénicas en los medios
continuos de membrana y placa se logré desarrollar en la plataforma ADEFID, dos mddulos
para la visualizacion de estos fendmenos, lo cual es el objetivo que se buscaba en este

proyecto de tesis.

Las geometrias seleccionadas fueron debidas, a que en la literatura, son las que cuentan
con mas informacion de sus modelos matematicos y las soluciones correspondientes; y son

casos de estudio clasicos en cursos de vibraciones mecanicas basicos y avanzados.

El primer mddulo se enfoc6 en la animacién de los modos de vibracion en las
membranas rectangulares y circulares; se optd por la simulacién computacional de las
membranas, debido a la dificultad de lograr visualizar la vibracién a partir de los modelos

matematicos, lo cual se observa en el segundo capitulo.

Una vez teniendo el mallado, tanto de los segmentos rectangulares (elementos de la
membrana rectangular), como de los segmentos circulares (membrana circular), se agrego el
modelo matematico en el codigo del médulo de la membrana, y se prosiguié con modificar
este codigo para permitir la variacion de los parametros de; amplitud, nimero de nodos, etc.,

que permiten la construccion de la superficie.

A pesar de la complejidad de la estructura del cédigo implementado para la creacion de
la superficie, ésta resultd ser flexible, ya que fue posible tomarla como base para adaptarla a

otros casos.

Las expresiones empleadas para llevar a cabo la simulacién de la vibracion en las
membranas constaban de la informacion necesaria para la forma que deberia tomar durante la
simulacion. Sin embargo, fue necesario incluir algunas adecuaciones dentro de las ecuaciones
solucidn para ajustar las coordenadas del sistema cartesiano al sistema radial en el caso de la

membrana circular.

La segunda seccion del primer modulo surgio de la idea de ampliar el fendmeno que se
podria observar aplicando vibracion en una geometria circular, por lo que se realiza la
animacion del pulso y del tren de ondas. El disefio del algoritmo del primero se considera de

mayor dificultad debido a la restriccion impuesta de extincién de la vibracién en el borde de la
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membrana, es decir amplitud de desplazamiento cero, ya que el segundo consta de una funcion

sencilla.

El segundo mddulo consta de una arquitectura mas elaborada que el caso de la
membrana rectangular, sin embargo, se considera que serd una herramienta Util si se desea
ampliar, este modulo, ya que cuenta con las bases necesarias para la geometria y Gnicamente

se tendria que modificar las condiciones de los extremos u otras restricciones.

La facilidad de utilizar estos modulos radica en que el usuario puede observar con
relativa sencillez las variables que definen el comportamiento del fenémeno vibratorio de cada
caso (amplitud, nodo, modo, etc.); ya que cuenta con las opciones de visualizacion y de como
presentar la animacion. Ademas ya que la programacion es modular el codigo es expandible a

nuevos casos, 1o que se discutird en el capitulo 5, definiendo el nuevo modelo matematico.
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ANALISIS/DISCUSIONES

""No basta saber, se debe también aplicar; no basta querer, se debe también hacer"

Johann Wolfgang Goethe




Como antecedentes de trabajos en simulacién de vibraciones mecanicas se encontraron
diferentes proyectos, pero todos restringidos a ciertas condiciones, como SimulPhysics de la
Universidad Nacional de Colombia, sede Medellin [16], que reporta las simulaciones de ondas

estacionarias, viajera, pulso y vibracién en cuerdas, aunque no lo presentan en una forma 3D.

Otros ejemplos de simulacion encontrados fueron realizados mediante Matlab®, sin
embargo éstos presentan la solucién de ecuaciones diferenciales parciales, y no muestran la

opcidn de interactuar en la interfaz.

La simulacion de la vibracion en la placa desarrollada para esta tesis se encuentra
limitada, debido a que no se observan los diversos patrones obtenidos reportados en otros
trabajos como consecuencia de las vibraciones, figs. 5.1 y 5.2, en los cuales se tendria que

emplear las mismas condiciones con las que se trabajo para obtenerlos [17].
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Fig. 5.1.- Dibujos realizados por Ernst Chladni que muestran los patrones formados por

arena colocada sobre una placa metélica cuadrada al ser sometida a vibraciones [18].

57



f‘15.85 GHz f2!10.27 GHz f3-10.35 GHz f4511.57 GHz '5"3'37 GHz 16513.45 GHz '75‘4.65 GHz
ra . o
‘ - . - >
A 4 e [ -
fel14.75 GHz f9=17‘63 GHz 1‘0518.2 GHz '“l13‘32 GHz f'2“19 46 GHz '13'19,54 GHz 1‘4‘-‘22.39 GHz

= 2= :

Fig. 5.2.- Formas adoptadas durante la vibracion, con su correspondiente valor de

frecuencia [19].

La formacion de estos patrones es debido a la variacion de la frecuencia de excitacion

aplicada al medio.

Como trabajo futuro se podria implementar estos patrones en la simulacion para placas,
sin embargo, Se necesitaria conocimientos mas avanzados de vibraciones y de ecuaciones
diferenciales parciales, debido a que se cuentan con limitaciones de no conocer el modelo

matematico que representa la solucién de la vibracion.

Otra opcion para ampliar el modulo de placas seria con la simulacion de modelos
matematicos de algunos casos como el simplemente apoyado pero donde la placa no se
encuentra horizontalmente, o el caso donde las esquinas de la placa se encuentran con

abrazaderas [4].

En el caso de respuesta a un pulso se podria ampliar en el sentido de que la excitacién
no necesariamente tenga que generarse en el centro de la geometria, y que el pulso tome otras
formas (geometrias diferentes), que se presente mas de un pulso en regiones diferentes sobre
la superficie, modificar las condiciones de frontera para que el viaje y la extincion de la onda

se presente de diversas formas, etc.
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CONCLUSIONES

“Cuando parezca que todo esta en tu contra,
recuerda que los aviones despegan contra el viento, no con éL.”

Henry Ford



Terminado el analisis de los conceptos que influyen en la vibracion, para proceder a la
simulacion, primero se debid crear un mallado dividido en elementos para usar las herramientas
de OpenGL, logrando construir las bases para las geometrias deseadas. Una vez teniendo el
mallado, se siguid con la representacion de los modos de vibracion en las membranas, para lo
cual ya se contaba con la ecuacidn de la amplitud de desplazamiento, previamente obtenidas de la

consulta a la literatura existente.

Debido a que las ecuaciones que representan las solucion en cada caso, tenian que tomar
en cuenta las formas y restricciones que se buscaba representar en cada una de ellas se debio
ajustar la ecuacion; como lo fue en las membranas, se variaron los parametros de la geometria, el

naimero de nodos y modos; asi en cada seccidn se hizo su debida consideracion en la ecuacion.

En la parte inicial del desarrollo de la tesis el familiarizarse con el manejo de las
funciones de dibujo consistio en el punto principal para lograr con el menor uso de instrucciones
la construccion de la superficie buscada, una vez contando con esto, fue necesario idear un ciclo

que dirigiera el trazado y aplicara en su momento y forma las funciones de dibujo.

Terminada la parte de construccion, la simulacion fue en su momento la parte que tomo
mas tiempo, debido a que el control de tiempo tenia que ser desarrollado a partir de funciones ya
establecidas por el programa base realizado en la plataforma de ADEFID. Sin embargo, el hecho
que ya estuviera previamente definido al final fue una ayuda para que el control necesario fuera

establecido con unas pocas instrucciones en los momentos de inicio, pausa y reinicio-fin.
Como cierre del proyecto se queda un conocimiento de conceptos y herramientas que son

aplicables con fines académicos y pueden servir como base para una expansion ya sea en el

continuo desarrollo de simulacidon de vibraciones o en el desarrollo de nuevos temas de estudio.
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> APENDICES

Apéndice A

%+ Cadigo de primera opcidén en membrana rectangular
amp=a*cos(t*w);
switch (p)

case 1:
switch (pr)

case 1:
for (k=0; k<=100; k++)

if (k>0)
glTranslatef(0.01*b, 0.0f, 0.0f);

for (j=0; j<=50; j++)
glBegin (GL_POLYGON);
for (i=0; i<=1; i++)
{
z=a*sin(m*PI*(i+k)/101)*sin(n*P1*j/51)*cos(t*w);
c=abs(z/amp);
if (z>0)
glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
else
glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);
}
glVertex3f ( 0.01*b*i, 0.02*d*j, z);

}
for (i=1;i>=0; i--)

z=a*sin(m*P1*(i+k)/101)*sin(n*P1*(j+1)/51)*cos (t*w);

c=abs(z/amp);
if (z>0)

glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
else

glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);
éIVertex3f (0.01*b*i, 0.02*d*(j+1), 2);

}
glEnd();

break;
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%+ Cddigo de segunda opcidn en membrana rectangular

Apéndice B

case 2:

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magnl, magn2, magn3, magn4;
glEnable(GL_LIGHTING); SetMaterial(10);

for (k=0; k<=100; k++)

{

}

gIDisable(GL_LIGHTING);

}
break;

if (k>0)

glTranslatef(0.01*b, 0.0f, 0.0f);

for (j=0; j<=50; j++)
{

glBegin (GL_POLYGON);
for (i=0; i<=1; i++)

pvn[i]=a*sin(m*P I*(i+k)/101)*sin(n*PI*j/51)*cos (t*w);

pvn[i+2]=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w);

}

dz1=pvn[1]-pvn[0];

dz2=pvn[2]-pvn[0];

dz3=pvn[3]-pvn[1];

dz4=pvn[3]-pvn[2];

no[0]=-0.02*d*dz1;

no[1]=-0.01*b*dz2;

no[2]=0.01*0.02*b*d;
magnl=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]);
no[3]=-0.02*d*dz1;

no[4]=-0.01*b*dz3;

no[5]=no[2];
magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]);
no[6]=-0.02*d*dz4;

no[7]=-0.01*b*dz3;

no[8]=no[2];
magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]);
no[9]=-0.02*d*dz4;

no[10]=-0.01*b*dz2;

no[11]=no[2];
magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]);

for (int xx=0; XX<3; Xx++)

{
vnl[xx]=no[xx]/(float)magnl;
vn2[xx]=no[xx+3]/(floatymagn2;
vn3[xx]=no[xx+6]/(float)magn3;
vn4[xx]=no[xx+9]/(float)magn4;

}
for (i=0; i<=1; i++)
{
z=a*sin(m*PI*(i+k)/101)*sin(n*P1*j/51)*cos(t*w);
if (i==0)
gINormal3fv(vnl);
else
gINormal3fv(vn2);
glVertex3f ( 0.01*b*i, 0.02*d*j, 2);

}
for (i=1;i>=0; i--)

{
z=a*sin(m*P1*(i+k)/101)*sin(n*P1*(j+1)/51)*cos (t*w);
if (i==1)
gINormal3fv(vn3);
else
gINormal3fv(vn4);
glVertex3f ( 0.01*b*i, 0.02*d*(j+1), 2);
}
glEnd();
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Apéndice C

amp=a*cos(t*w);
switch (pc)

case 1:

for (k=0; k<=100; k++)

break;

for (j=0; j<=127; j++)

%+ Codigo de primera opcién membrana circular

th=PI1*j/64;
glBegin (GL_POLYGON);
for (r=0; r<=1; r++)

x=0.01*(r+k)*R*cos(th);
y=0.01*(r+k)*R*sin(th);
if (m==0)
z=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w);
else

z=a*sin(n*P1*(r+k)/101)*sin(m*th)*cos(t*w);

c=abs(z/amp);
if (z>0)

glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
else
glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);

}
glVertex3f ( x,y, 2);

for (r=1; r>=0; r--)

3
glEnd();

x=0.01*(r+k)*R*cos(th+P1/64);
y=0.01*(r+k)*R*sin(th+P1/64);
if (m==0)

z=a*sin((n-0.5)*(PI* (r+k)/101+PI))*cos(t*w);
else
z=a*sin(n*P1*(r+k)/101)*sin(m* (th+P1/64))*cos(t*w);
c=abs(z/amp);
if (z>0)
{
}

else

{

glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);

glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);

}
glVertex3f ( x,y, 2);
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Apéndice D

% Cadigo de segunda opcion en membrana circular

case 2:

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magnl, magn2, magn3, magn4;
glEnable(GL_LIGHTING);
SetMaterial(23);

for (k=0; k<=100; k++)

for (j=0; j<=127; j++)

{
th=PI1%j/64;
glBegin (GL_POLYGON);
for (r=0; r<=1; r++)

if (m==0)

pvn[r]=a*sin((n-0.5)*(P1*(r+k)/101+PI))*cos(t*w);
pvn[r+2]=a*sin((n-0.5)* (PI*(r+k)/101+PI))*cos(t*w);

}
else
{
pvn[r]=a*sin(n*PI*(r+k)/101)*sin(m*th)*cos(t*w);
pvn[r+2]=a*sin(n*PI*(r+k)/101)*sin(m*(th+P1/64))*cos(t*w);
}

}

dz1=pvn[1]-pvn[0];
dz2=pvn[2]-pvn[0];
dz3=pvn[3]-pvn[1];
dz4=pvn[3]-pvn[2];

no[0]=0.01*R*(dz2*sin(th)-k*dz1*sin(th+65*P1/128));
no[1]=0.01*R*(k*dz1*cos(th+65*P1/128)-dz2*cos(th));
no[2]=pow((0.01*R),2)*k*(cos(th)*sin(th+65*P1/128)-sin(th)*cos(th+65*P1/128));
magnl=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]);

no[3]=0.01*R*(dz3*sin(th)-(k+1)*dz1*sin(th+65*P1/128));
no[4]=0.01*R*((k+1)*dz1*cos(th+65*P1/128)-dz3*cos(th));

no[5]=pow((0.01*R),2)* (k+1)*(cos(th)*sin(th+65*P1/128)-sin(th)*cos(th+65*P1/128));
magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]);

no[6]=0.01*R*(dz3*sin(th+P1/64)-(k+1)*dz4*sin(th+65*P1/128));
no[7]=0.01*R*((k+1)*dz4*cos(th+65*P1/128)-dz3*cos(th+P1/64));
no[8]=pow((0.01*R),2)*(k+1)*(cos(th+P1/64)*sin(th+65*P1/128)-sin(th+P1/64)*cos(th+65*P1/128));
magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]);

no[9]=0.01*R*(dz2*sin(th+P1/64)-k*dz4*sin(th+65*P1/128));
no[10]=0.01*R*(k*dz4*cos(th+65*P1/128)-dz2*cos(th+P1/64));
no[11]=pow((0.01*R),2)*k*(cos(th+P1/64)*sin(th+65*P1/128)-sin(th+P1/64)*cos(th+65*P1/128));
magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]);

for (int xx=0; xx<3; Xx++)

{
vnl[xx]=no[xx]/(float)magnl;
vn2[xx]=no[xx+3]/(floatymagn2;
vn3[xx]=no[xx+6]/(floatymagn3;
vn4[xx]=no[xx+9]/(floatymagn4;

}

for (r=0; r<=1; r++)

{

x=0.01*(r+k)*R*cos(th);
y=0.01*(r+k)*R*sin(th);

if (m==0)
{
z=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w);
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}
glDisable(GL_LIGHTING);

}

}

else
{
z=a*sin(n*PI*(r+k)/101)*sin(m*th)*cos(t*w);
}
if (r==0)
gINormal3fv(vnl);
else

gINormal3fv(vn2);

glVertex3f ( x, Y, 2);

for (r=1; r>=0; r--)

}
glEnd();

x=0.01*(r+k)*R*cos(th+P1/64);
y=0.01*(r+k)*R*sin(th+P1/64);
if (m==0)

z=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w);
}
else

{

}
if (r==1)

z=a*sin(n*P1*(r+k)/101)*sin(m* (th+P1/64))*cos(t*w);

gINormal3fv(vn3);
else
gINormal3fv(vn4);

glVertex3f ( x,y, 2);
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Apéndice E

R/
L X4

Caodigo de primera opcion pulso
amp=a*cos(t*w);
switch (p)

case 3:
switch (pp)
{

case 1:
v=22.5;
comp=0;
for (k=0; k<=100; k++)
for (j=0; j<=127; j++)

th=P1*j/64

glBegin (GL_POLYGON);
for (r=0; r<=1; r++)

{

x=0.01*(r+k)*R*cos(th);
y=0.01*(r+k)*R*sin(th);

if (t<=1.6)

bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);

}
if (t>1.6 && t<=4.8)

bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6));
z=-a*exp(bb);

}
if (t>4.8 && t<=6.4)

{
bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8));
z1=-0.625*a*(6.4-t)*exp(bb);
bb=-0.01* (2*(r+k)-145-v*(t-4.8))*(2* (r+k)-145-v*(t-4.8));
22=-0.625*a*(6.4-t)*exp(bb);
if (z2<comp)
{
comp=z2;
z=71;
}
else
7=72;
}
if (z>-a*0.5)
glColor3f (0.5, 0.5, 0.5);
}
else
glColor3f (0.75, 0.75, 0.75);
}

glVertex3f ( x, v, 2);

}
for (r=1; r>=0; r--)

{

x=0.01*(r+k)*R*cos(th+P1/64);
y=0.01*(r+k)*R*sin(th+P1/64);

if (t<=1.6)

{
bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);
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}

break;

}
glEnd();

}
if (t>1.6 && t<=4.8)

bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6));
z=-a*exp(bb);

if (t>4.8 && t<=6.4)

{
bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8));
z1=-0.625*a*(6.4-t)*exp(bb);
bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2* (r+k)-145-v*(t-4.8));
72=-0.625*a*(6.4-t)*exp(bb);
if (z2<comp)
comp=z2;
z=71,
}
else
=12,
}
if (z>-a*0.5)
glColor3f (0.5, 0.5, 0.5);
}
else
glColor3f (0.75, 0.75, 0.75);
}

glVertex3f ( x, Y, 2);
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Apéndice F

% Codigo segunda opcion pulso
case 2:

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magnl, magn2, magn3, magn4;
glEnable(GL_LIGHTING);
SetMaterial(6);

v=22.5;
comp=0;
for (k=0; k<=100; k++)
{
for (j=0; j<=127; j++)

th=PI1*j/64;
glBegin (GL_POLYGON);

for (r=0; r<=1; r++)

if (t<=1.6)

bb=-0.01*(r+k)*(r+k);
pvn[r]=-0.625*a*t*exp(bb);
pvn[r+2]=pvn[r];

}
if (t>1.6 && t<=4.8)

bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6));
pvn[r]=-a*exp(bb);
pvn[r+2]=pvn[r];

}

if (t>4.8 && t<=6.4)

{
bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8));
z1=-0.625*a*(6.4-t)*exp(bb);
bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2* (r+k)-145-v*(t-4.8));
72=-0.625*a*(6.4-t)*exp(bb);
if (z2<comp)

comp=z2;
pvn[r]=z1;
pvn[r+2]=21;

else
pvn[r]=z2;
pvn[r+2]=22;

}

dzl=pvn[1]-pvn[0];
dz2=pvn[2]-pvn[0];
dz3=pvn[3]-pvn[1];
dz4=pvn[3]-pvn[2];

no[0]=0.01*R*(dz2*sin(th)-k*dz1*sin(th+65*P1/128));
no[1]=0.01*R*(k*dz1*cos(th+65*P1/128)-dz2*cos(th));
no[2]=pow((0.01*R),2)*k*(cos(th)*sin(th+65*P1/128)-sin(th)*cos(th+65*P1/128));
magnl=sqgrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]);

no[3]=0.01*R*(dz3*sin(th)-(k+1)*dz1*sin(th+65*P1/128));
no[4]=0.01*R*((k+1)*dz1*cos(th+65*P1/128)-dz3*cos(th));

no[5]=pow((0.01*R),2)* (k+1)*(cos(th)*sin(th+65*P1/128)-sin(th)*cos(th+65*P1/128));
magn2=sqgrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]);

no[6]=0.01*R*(dz3*sin(th+P1/64)- (k+1)*dz4*sin(th+65*P1/128));
no[7]=0.01*R*((k+1)*dz4*cos(th+65*P1/128)-dz3*cos(th+P1/64));

no[8]=pow((0.01*R),2)* (k+1)*(cos(th+P1/64)*sin(th+65*P1/128)-sin(th+P1/64)*cos(th+65*P1/128));
magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]);
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no[9]=0.01*R*(dz2*sin(th+P1/64)-k*dz4*sin(th+65*P1/128));
no[10]=0.01*R*(k*dz4*cos(th+65*P1/128)-dz2*cos(th+P1/64));
no[11]=pow((0.01*R),2)*k*(cos(th+P1/64)*sin(th+65*P1/128)-sin(th+P1/64)*cos(th+65*P1/128));
magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]);

for (int xx=0; xx<3; XX++)

{
vnl[xx]=no[xx]/magnl;
vn2[xx]=no[xx+3]/magn2;
vn3[xx]=no[xx+6]/magn3;
vn4[xx]=no[xx+9]/magn4;
}

for (r=0; r<=1; r++)

x=0.01*(r+k)*R*cos(th);
y=0.01*(r+k)*R*sin(th);

if (t<=1.6)

bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);

}
if (t>1.6 && t<=4.8)

bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6));
z=-a*exp(bb);

}

if (t>4.8 && t<=6.4)

{
bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8));
z1=-0.625*a*(6.4-t)*exp(bb);
bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2* (r+k)-145-v*(t-4.8));
72=-0.625*a*(6.4-t)*exp(bb);
if (z2<comp)

comp=z2;
z=71;

else
7=72;

}

if (r==0)

gINormal3fv(vnl);
else

gINormal3fv(vn2);

glVertex3f ( x,y, 2);
}

for (r=1; r>=0; r--)

x=0.01*(r+k)*R*cos(th+P1/64);
y=0.01*(r+k)*R*sin(th+P1/64);

if (t<=1.6)

{
bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);

}

if (t>1.6 && t<=4.8)

{
bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6));
z=-a*exp(bb);

}

if (t>4.8 && t<=6.4)

{
bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8));
z1=-0.625*a*(6.4-t)*exp(bb);
bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2* (r+k)-145-v*(t-4.8));
z2=-0.625*a*(6.4-t)*exp(bb);
if (z2<comp)



break;
glDisable(GL_LIGHTING);

comp=z2;
z=71;
}
else
7=72;
}
if (r==1)
gINormal3fv(vn3);
else

gINormal3fv(vn4);
glVertex3f ( x, vy, 2);

}
glENd();
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Apéndice G

% Cadigo primera opcion tren de onda

amp=a*cos(t*w);
switch (pt)
{

case 1:
v=1.0;

for (k=0; k<=100; k++)

break;

for (j=0; j<=127; j++)

th=PI1%j/64;
glBegin (GL_POLYGON);
for (r=0; r<=1; r++)

x=0.01*(r+k)*R*cos(th);
y=0.01*(r+k)*R*sin(th);
if (t<=1.6)

bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);

}
if (t>1.6)

z=-a*sin(0.1*(k+r)-v*t+0.5*Pl);
}

c=abs(z/amp);
if (z>0)
{

}

else

{

glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);

glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);

}
glVertex3f ( x, vy, 2);

}
for (r=1; r>=0; r--)

{

}
glEnd();

x=0.01*(r+k)*R*cos(th+P1/64);
y=0.01*(r+k)*R*sin(th+P1/64);
if (t<=1.6)
{
bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);

}
if (t>1.6)
{

}

c=abs(z/amp);
if (z>0)

z=-a*sin(0.1*(k+r)-v*t+0.5*Pl);

glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
else
glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);

}
glVertex3f ( x, vy, 2);
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Apéndice H
%+ Codigo segunda opcidn tren de onda

case 2:

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magnl, magn2, magn3, magn4;
glEnable(GL_LIGHTING);
SetMaterial(4);

v=1.0;

for (k=0; k<=100; k++)

{
for (j=0; j<=127; j++)

th=PI1*j/64;
glBegin (GL_POLYGON);

for (r=0; r<=1; r++)

if (t<=1.6)

{
bb=-0.01*(r+k)*(r+k);
pvn[r]=-0.625*a*t*exp(bb);
pvn[r+2]=pvn[r];

}
if (t>1.6)

pvn[r]=-a*sin(0.1*(k+r)-v*t+0.5*Pl);
pvn[r+2]=pvn[r];

}

dz1=pvn[1]-pvn[0];
dz2=pvn[2]-pvn[0];
dz3=pvn[3]-pvn[1];
dz4=pvn[3]-pvn[2];

no[0]=0.01*R*(dz2*sin(th)-k*dz1*sin(th+65*P1/128));
no[1]=0.01*R*(k*dz1*cos(th+65*P1/128)-dz2*cos(th));
no[2]=pow((0.01*R),2)*k* (cos(th)*sin(th+65*P1/128)-sin(th)*cos(th+65*P1/128));
magnl=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]);

no[3]=0.01*R*(dz3*sin(th)-(k+1)*dz1*sin(th+65*P1/128));
no[4]=0.01*R*((k+1)*dz1*cos(th+65*P1/128)-dz3*cos(th));

no[5]=pow((0.01*R),2)* (k+1)*(cos(th)*sin(th+65*P1/128)-sin(th)*cos(th+65*P1/128));
magn2=sqgrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]);

no[6]=0.01*R*(dz3*sin(th+P1/64)-(k+1)*dz4*sin(th+65*P1/128));
no[7]=0.01*R*((k+1)*dz4*cos(th+65*P1/128)-dz3*cos(th+P1/64));

no[8]=pow((0.01*R),2)* (k+1)*(cos(th+P1/64)*sin(th+65*P1/128)-sin(th+P1/64)*cos(th+65*P1/128));
magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]);

no[9]=0.01*R*(dz2*sin(th+P1/64)-k*dz4*sin(th+65*P1/128));
no[10]=0.01*R*(k*dz4*cos(th+65*P1/128)-dz2*cos(th+P1/64));
no[11]=pow((0.01*R),2)*k*(cos(th+P1/64)*sin(th+65*P1/128)-sin(th+P1/64)*cos(th+65*P1/128));
magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]);

for (int xx=0; xx<3; Xx++)

{
vnl[xx]=no[xx]/magnl;
vn2[xx]=no[xx+3]/magn2;
vn3[xx]=no[xx+6]/magn3;
vn4[xx]=no[xx+9]/magn4;

for (r=0; r<=1; r++)

{
x=0.01*(r+k)*R*cos(th);
y=0.01*(r+k)*R*sin(th);
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defautlt:;

}
glDisable(GL_LIGHTING);

if (t<=1.6)

{
bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);
}
if (t>1.6)
z=-a*sin(0.1*(k+r)-v*t+0.5*P1);
}
if (r==0)
gINormal3fv(vnl);
else
gINormal3fv(vn2);
glVertex3f ( x,y, 2);
}

for (r=1; r>=0; r--)

x=0.01*(r+k)*R*cos(th+P1/64);
y=0.01*(r+k)*R*sin(th+P1/64);

if (t<=1.6)

bb=-0.01*(r+k)*(r+k);
z=-0.625*a*t*exp(bb);

}
if (t>1.6)

z=-a*sin(0.1*(k+r)-v*t+0.5*P1);
}

if (r==1)

gINormal3fv(vn3);
else

gINormal3fv(vn4);
glVertex3f ( x, y, 2);

}
glEnd();
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Apéndice |
% Codigo primera opcion placa
amp=a*cos(t*w);
switch (pl)

case 1:

glBegin (GL_POLYGON);

glColor3f (0.4, 0.4, 0.35);

glVertex3f (-0.05, -0.05, 0);

glVertex3f (-0.05, 1.02*d+0.05, 0);
glVertex3f (-0.05, 1.02*d+0.05, espesor);
glVertex3f (-0.05, 0, espesor);

glEnd();

glBegin (GL_POLYGON);

glColor3f (0.4, 0.4, 0.35);

glVertex3f (1.01*b+0.05, -0.05, 0);

glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0);
glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor);
glVertex3f ( 1.01*b+0.05, -0.05, espesor);
glEnd();

glBegin (GL_POLYGON);

glColor3f (0.4, 0.4, 0.35);

glVertex3f (-0.05, 1.02*d+0.05, 0);

glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0);
glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor);
glVertex3f (-0.05, 1.02*d+0.05, espesor);
glEnd();

glBegin (GL_POLYGON);

glColor3f (0.4, 0.4, 0.35);

glVertex3f (-0.05, -0.05, 0);

glVertex3f ( 1.01*b+0.05, -0.05, 0);
glVertex3f ( 1.01*b+0.05, -0.05, espesor);
glVertex3f (-0.05, -0.05, espesor);
glEnd();

for (k=0; k<=100; k++)

if (k>0)
glTranslatef(0.01*b, 0.0f, 0.0f);

for (j=0; j<=50; j++)
{
glBegin (GL_POLYGON);

/IPlaca inferior
for (i=0; i<=1; i++)

{
z=a*sin(m*PI*(i+k)/101)*sin(n*P1*j/51)*cos(t*w);
c=abs(z/amp);
if (z>0)
{
glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
}
else
glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);
}
glVertex3f ( 0.01*b*i, 0.02*d*j, z);
}
for (i=1; i>=0; i--)
{

z=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos (t*w);
c=abs(z/amp);
if (z>0)
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glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
else
glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);

}
glVertex3f ( 0.01*b*i, 0.02*d*(j+1), 2);
}

/[Placa superior
for (i=0; i<=1; i++)

z=a*sin(m*P1*(i+k)/101)*sin(n*P1*j/51)*cos(t*w);
c=abs(z/amp);
if (z>0)

glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
else

glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);
}
glVertex3f ( 0.01*b*i, 0.02*d*j, z+espesor);

}
for (i=1; i>=0; i--)

{
z=a*sin(m*P1*(i+k)/101)*sin(n*PI*(j+1)/51)*cos (t*w);
c=abs(z/amp);
if (z>0)
glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25);
}
else
{
glColor3f (0.25*c+.25, 0.35*c+.45, 0.5);
}
glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z+espesor);
}
glEnd();
}
}
break;
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Apéndice J

R/

case 2:

% Caodigo segunda opcidn placa

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magnl, magn2, magn3, magn4;
glEnable(GL_LIGHTING);

SetMaterial(15);

glBegin (GL_POLYGON);
gINormal3f(1.0, 0.0, 0.0);

glVertex3f (-0.05, -0.05, 0);

glVertex3f (-0.05, 1.02*d+0.05, 0);
glVertex3f (-0.05, 1.02*d+0.05, espesor);
glVertex3f (-0.05, 0, espesor);

glEnd();

glBegin (GL_POLYGON);

gINormal3f(1.0, 0.0, 0.0);

glVertex3f (1.01*b+0.05, -0.05, 0);

glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0);
glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor);
glVertex3f ( 1.01*b+0.05, -0.05, espesor);

glEnd();

glBegin (GL_POLYGON);

gINormal3f(0.0, -1.0, 0.0);

glVertex3f (-0.05, 1.02*d+0.05, 0);

glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0);
glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor);
glVertex3f (-0.05, 1.02*d+0.05, espesor);

glEnd();

glBegin (GL_POLYGON);
gINormal3f(0.0, -1.0, 0.0);

glVertex3f (-0.05, -0.05, 0);

glVertex3f ( 1.01*b+0.05, -0.05, 0);
glVertex3f (1 1.01*b+0.05, -0.05, espesor);
glVertex3f (-0.05, -0.05, espesor);

glEnd();

for (k=0; k<=100; k++)
{

if (k>0)

glTranslatef(0.01*b, 0.0f, 0.0f);

for (j=0; j<=50; j++)

{

glBegin (GL_POLYGON);
for (i=0; i<=1; i++)

pvn[i]=a*sin(m*P I*(i+k)/101)*sin(n*PI*j/51)*cos (t*w);
pvn[i+2]=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w);
}

dz1=pvn[1]-pvn[0];
dz2=pvn[2]-pvn[0];
dz3=pvn[3]-pvn[1];
dz4=pvn[3]-pvn[2];

no[0]=-0.02*d*dz1;

no[1]=-0.01*b*dz2;

no[2]=0.01*0.02*b*d;
magnl=sqgrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]);

no[3]=-0.02*d*dz1;

no[4]=-0.01*b*dz3;

no[5]=no[2];
magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]);
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}
break;
}glDisable(GL_LIGHTING);

no[6]=-0.02*d*dz4;

no[7]=-0.01*b*dz3;

no[8]=no[2];
magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]);

no[9]=-0.02*d*dz4;

no[10]=-0.01*b*dz2;

no[11]=no[2];
magn4=sqgrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]);

for (int xx=0; xx<3; xx++)

{
vnl[xx]=no[xx]/(float)magnl;
vn2[xx]=no[xx+3]/(float)magn2;
vn3[xx]=no[xx+6]/(floatymagn3;
vnd[xx]=no[xx+9]/(float)magn4;

/IPlaca inferior
for (i=0; i<=1; i++)

z=a*sin(m*P1*(i+k)/101)*sin(n*P1*j/51)*cos(t*w);

if (i==0)
gINormal3fv(vnl);
else
gINormal3fv(vn2);
glVertex3f ( 0.01*b*i, 0.02*d*j, 2);
}

for (i=1; i>=0; i--)
z=a*sin(m*P1*(i+k)/101)*sin(n*P1*(j+1)/51)*cos (t*w);

if (i==1)
gINormal3fv(vn3);
else
gINormal3fv(vn4);
glVertex3f ( 0.01*b*i, 0.02*d*(j+1), 2);
}

/IPlaca superior
for (i=0; i<=1; i++)

{
z=a*sin(m*P1*(i+k)/101)*sin(n*P1*j/51)*cos(t*w);
if (i==0)
gINormal3fv(vnl);
else
gINormal3fv(vn2);
glVertex3f (0.01*b*i, 0.02*d*j, z+espesor);
}
for (i=1; i>=0; i--)
{
z=a*sin(m*P1*(i+k)/101)*sin(n*PI*(j+1)/51)*cos (t*w);
if (i==1)
gINormal3fv(vn3);
else
gINormal3fv(vn4);
glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z+espesor);
}
gIEnd();
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Apéndice K

R/

«* Animacién

float t;

if (GetState()==PIN)
{

t= (float)(GetTickCount()-m_time_0)/1000.0;
DrawGeometry(t);
DrawPulse(t);

}
else if (GetState() == SUSPEND)
t=0.0;
DrawGeometry(t);
DrawPulse(t);
else if(GetState() == POUT)
t=(float) (t_pausa-m_time_0)/1000.0;

DrawGeometry (t);
DrawPulse(t);
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“;Travesura realizada!”- George Weasley Harry Potter y el Prisionero de Azkaban.

Capitulo 10. ElI mapa del merodeador



