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INTRODUCCIÓN 

 

 

 

“Juro solemnemente que mis intenciones no son buenas.”- George 

Weasley. Harry Potter y el Prisionero de Azkaban. Capítulo 10. El 

mapa del merodeador 

 

 

 

1.1 Objetivo 

1.2 Fundamentos 

1.2.1 Sistemas discretos. 

1.2.2 Sistemas continuos. 
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1.1 Objetivo 

 

El objetivo de esta tesis es analizar el fenómeno de vibraciones mecánicas en 

medios continuos, tales como membranas (con geometría rectangular y circular) y placas 

(geometría rectangular). Debido a la complejidad para visualizar los patrones de la 

vibración y la localización de nodos y antinodos para cada uno de los modos de vibración 

(simétricos y antisimétricos), se desarrolló una herramienta de simulación basada en la 

plataforma ADEFID (ADvanced Engineering platForm for Industrial Development) [1]. 

Con esta herramienta el usuario podrá interactuar con los parámetros que describen cada 

uno de los casos considerados en la simulación.  Además del caso de vibración libre, se 

presentan algunos ejemplos que se consideraron interesantes para su análisis; la respuesta a 

un pulso en una membrana circular que inicia en el centro del círculo y que se propaga 

radialmente hasta su borde y luego la respuesta a un tren de pulsos. Todo esto se desarrolló 

en un entorno gráfico e interactivo, donde el usuario puede modificar los diferentes 

parámetros que gobiernan el fenómeno vibratorio. 

 

El por qué del estudio de las vibraciones es debido a que la mayoría de las máquinas 

y las estructuras experimentan cierto grado de vibración y, su diseño y operación, requiere 

generalmente consideración de su respuesta vibratoria. La vibración provoca limitantes en 

la velocidad en los procesos de manufactura, baja calidad en los productos elaborados por 

máquinas-herramientas, ruido, y estas vibraciones pueden alcanzar a otros instrumentos de 

precisión y causar fallas de funcionamiento. 

 

1.2  Fundamentos 

A continuación se presentan los conceptos fundamentales para el desarrollo de este 

trabajo de tesis. 

Vibración. Se define una vibración como la variación con respecto al tiempo, de la 

magnitud de un parámetro que define, totalmente o parcialmente, el estado de un sistema –

mecánico, eléctrico, económico, biológico–, respecto a una referencia específica, cuando la 
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magnitud del parámetro es alternativamente mayor y menor que la de referencia [2]. En 

esta tesis el interés fundamental estará centrado en los sistemas mecánicos.  

 

Vibración Periódica. Una vibración periódica es aquella que se repite con todas sus 

características después de un intervalo de tiempo conocido como periodo fundamental de la 

vibración y representado por . Asociada a una vibración periódica está su frecuencia, 

definida como el número de veces que la vibración se repite por unidad de tiempo; es decir 

 

T

1
f   

 

Es importante señalar que para que un sistema mecánico este sujeto a vibración es 

necesario la presencia de masa o inercia y elasticidad. Aun cuando todos los sistemas 

mecánicos disipan energía, su presencia no es necesaria para que un sistema este sujeto a 

vibración y en muchos casos la modelación y la cuantificación de las propiedades 

disipativas de energía de un sistema son tan complicadas que frecuentemente se desprecian. 

En sintonía con este hecho, en este trabajo de tesis, no se considera la disipación de energía.  

Una característica fundamental de los sistemas vibratorios es el número de grados 

de libertad del sistema. 

Grados de Libertad. Los grados de libertad de un sistema es el número mínimo y 

suficiente de variables que permiten determinar de manera completa el estado de un sistema 

[3]. 

Para un sistema mecánico, el estado del sistema significa la posición del sistema. Es 

decir, la posición de todas las partículas de todos los cuerpos rígidos que forman el sistema. 

Dependiendo del número de grados de libertad, los sistemas vibratorios se clasifican en 

sistemas discretos y sistemas continuos.  

 

(1.1) 
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1.2.1 Sistemas discretos. 

En un sistema discreto se considera que los elementos inerciales del sistema están 

concentrados, “lumped”, en ciertas partes del sistema que carecen de propiedades elásticas 

y viceversa, los elementos elásticos del sistema están concentrados en ciertas partes del 

sistema que carecen de propiedades inerciales. Evidentemente, este es un modelo 

matemático que, de manera quizás sorprendente, permite analizar muy satisfactoriamente el 

comportamiento de un buen número de sistemas vibratorios mecánicos. En los sistemas 

discretos el número de grados de libertad es igual al número de elementos inerciales que el 

sistema posee. Igualmente, un sistema discreto tiene tantas frecuencias naturales como 

grados de libertad tenga. Las frecuencias naturales son las frecuencias a las cuales el 

sistema vibra cuando se excita de manera libre, el caso más sencillo de excitación libre es 

cuando el sistema se separa de su posición de equilibrio y se suelta a partir del reposo. 

Asociado a cada frecuencia natural hay un modo de vibración, los modos de vibración 

representan la relación de las amplitudes de la vibración de cada uno de los elementos 

inerciales del sistema. De manera natural estos modos de vibración pueden considerarse 

elementos de un espacio vectorial real R
n
 donde n es el número de grados de libertad del 

sistema. Más aun, puede probarse que los vectores de R
n
 que representan los modos de 

vibración, son ortogonales respecto a la métrica euclidiana  usual [2]  

Finalmente, es importante notar que si la frecuencia de la excitación de un sistema 

discreto coincide con alguna de las frecuencias naturales del sistema, se presenta el 

fenómeno de resonancia, que consiste en la presencia de vibraciones de magnitud elevada a 

pesar de que la magnitud de la excitación sea pequeña. 

 

1.2.2 Sistemas continuos. 

En contraste, en un sistema continuo, la inercia, la elasticidad, y la disipación 

energía si se desea incluir, se distribuyen de manera continua a lo largo de todo el sistema. 

Como consecuencia la determinación de la posición de los elementos inerciales de un 
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sistema continuo requiere un número infinito de variables. De esta observación, se 

desprenden las siguientes consecuencias: 

 

1 Un sistema continuo tiene un número infinito de grados de libertad. 

2 Un sistema continuo tiene un número infinito de frecuencias naturales.  

3 Los modos de vibración asociados a las frecuencias naturales ya no son 

elementos de R
n
 sino una función real de variable real continua y diferenciable. Las 

funciones que representan los modos de vibración asociados a diferentes frecuencias 

naturales son ortogonales entre sí. 

4 Cuando un sistema continuo se sujeta a una excitación cuya frecuencia 

coincide con alguna de las frecuencias naturales del sistema se presenta el fenómeno de 

resonancia. Durante este fenómeno, existen conjuntos de puntos en un sistema continuo 

cuya vibración es nula, estos conjuntos se conocen como nodos mientras otros conjuntos de 

puntos están sujetos a vibraciones de magnitud considerable. Estos conjuntos de puntos se 

conocen como antinodos. 

 

Una representación de los nodos y antinodos que se presentan durante la vibración 

se observa en una cuerda de longitud finita. Debido a las oscilaciones de la cuerda en los 

instantes sucesivos de tiempo se puede observar que ciertos puntos (nodos) en la cuerda se 

someten a cero amplitud de vibración, mientras que otros puntos (antinodos) alcanzarán la 

máxima amplitud. Los nodos y antinodos ocurren a distancias regulares a lo largo de la 

cuerda y se mantienen fijos en esa posición durante todo el tiempo. Este tipo de vibración 

se llama estacionaria o Standing wave, representada en la ec. (1.2) [3]. 

 

)cos()(senA2)t,x(f ωtkx  

 

(1.2) 
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Fig. 1.1.-Onda estacionaria en una cuerda tensa de longitud L. 

 

 

En una cuerda fija en ambos extremos, una onda estacionaria se forma cuando la 

frecuencia de la onda es tal que los puntos de amplitud de desplazamiento cero, 

corresponden con los bordes de la cuerda. Así se tendrá una onda estacionaria cuando la 

longitud de la cuerda corresponda a media longitud de onda, , o valores equivalentes a 

m/2 (m = 1, 2, 3,......). La onda viajera que se desplaza hacia la derecha, y la reflejada en 

el extremo (de igual amplitud y frecuencia) que se desplaza hacia la izquierda, interferirán, 

de manera que los puntos de amplitud de desplazamiento cero parecerán que no se mueven, 

generando, nodos (N) y antinodos (A), como se muestra en la fig. 1.1. 

 

Mientras que los nodos son puntos en ondas estacionarias unidimensionales (la onda 

transversal en cuerdas vibrantes y la onda longitudinal generada por la variación de la 

amplitud de presión en las ondas sonoras), en un oscilador bidimensional hay curvas a lo 

largo de las cuales no hay desplazamiento de los elementos del medio continuo, en la fig. 

1.2 se representan estas curvas o en el caso de la placa se tienen líneas de cero amplitud de 

vibración. 
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Fig. 1.2.- Representación esquemática de curvas y líneas de amplitud cero en un medio 

continuo. 

 

Por último es importante mencionar que en la realidad la totalidad de los sistemas 

vibratorios son continuos, pues no hay elementos inerciales que no tengan elasticidad y no 

hay elementos elásticos que no tengan inercia. La elección de modelar un sistema dado 

como discreto o continuo depende de la finalidad del análisis y la exactitud esperada de los 

resultados. El movimiento de un sistema de n grados de libertad se determina por la 

solución de un sistema de n ecuaciones diferenciales ordinarias de segundo orden, 

usualmente lineales. En contraste, el movimiento de un sistema continuo se determina por 

la solución de una ecuación diferencial parcial. Dado que la solución de un sistema de 

ecuaciones diferenciales ordinarias lineales es relativamente simple, es fácil encontrar la 

respuesta de un sistema discreto sujeto a una excitación específica en forma cerrada o, en el 

peor de los casos, mediante métodos numéricos estándar. Por otra parte, la solución de una 

ecuación diferencial parcial es mucho más complicada, y soluciones de forma cerrada están 

disponibles para sólo unos pocos sistemas continuos que tienen una geometría, condiciones 

de frontera y excitaciones extremadamente sencillas [3]  

 

Una vez contando los conceptos básicos de vibraciones en el siguiente capítulo se 

procede con el desarrollo matemático de los casos de estudio. 

 



 
 

 

 

 

 

 

 

 

 

PLANTEAMIENTO DEL MODELO 

MATEMÁTICO 

 

 

“Somos lo que hacemos día a día; de modo que la excelencia no es un acto, sino un hábito.” 

Aristóteles 

 

 

 

2.1. Membrana rectangular. 

2.2 Membrana circular. 

2.2.1 Respuesta a un pulso de onda. 

2.2.2 Respuesta a un tren de onda. 

2.3 Placa rectangular. 

 

 

 

II 
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2.1 Membrana rectangular. 

 

Una membrana es una lámina delgada perfectamente flexible de espesor constante. 

Para su análisis se consideran válidas las siguientes suposiciones; 

 

1) El movimiento de cualquier punto de la membrana es perpendicular al plano xy. 

3) La tensión es uniforme, es la misma en todos los puntos y en todas las 

direcciones. 

4) La membrana es flexible. 

 

En este proyecto se eligen las geometrías de una membrana rectangular y una 

circular [4-6], ya que es común de encontrarlas en aplicaciones tales como en el diseño de 

micrófonos, bombas, reguladores de presión y otras aplicaciones acústicas. 

 

Para obtener la ecuación de movimiento se parte de las siguientes definiciones: 

 

Considere la vibración transversal en una membrana elástica extendida en dos 

dimensiones, fig. 2.1. La posición de equilibrio de la membrana se encuentra en el plano x-

y. Las fuerzas gravitacionales del cuerpo de la membrana se desprecian. 

 

Fig. 2.1.-Elemento de la membrana sometida a tensión, P, [5]. 
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La deflexión transversal medida w(x,y,t) es en la dirección del eje z. Aislando un 

elemento diferencial de área dx por dy de la membrana, y visualizando a lo largo del eje y y 

x se obtiene la fig. 2.2, w(x,y,t)= f(x,y,t). 

 

 

Fig. 2.2.-Elemento infinitesimal de membrana sometida a tensión [5]. 

 

Usando las leyes de Newton en la dirección z se tiene: 

 

2

2

2

2

2

2

t
dydxdy

y
dxPdx

x
dyP













 www
 

 

Dividiendo entre el diferencial de área, dxdy, la ec. (2.1) se puede reescribir como: 

 

2

2

22

2

2

2

tc

1

yx 











 www
 

 

Dónde 



P

c  es la velocidad de propagación de la onda. Note que P= 

tensión/unidades de longitud y = masa/unidad de área. De la ec. (2.2) se observa que el 

(2.1) 

(2.2) 
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movimiento transversal de la membrana se gobierna por una ecuación de onda de dos 

dimensiones. 

 

Usualmente las condiciones de frontera especifican cero amplitud en los puntos de 

soporte de la membrana como ya se comentó anteriormente. 

 

Para el análisis de la vibración en una membrana rectangular se considera, que parte 

del reposo, fig. 2.3, y que se tiene una deflexión inicial en el eje z. 

 

Fig. 2.3.-Membrana rectangular con bordes fijos [7]. 

 

Para resolver el problema planteado en una membrana rectangular se empieza a 

formular usando las coordenadas cartesianas. 

 

0)t,y,x()5

)y,x(F)0,y,x()4

0)t,b,x()t,0,x()3

0)t,y,a()t,y,0()2

c

1
)1 tt2yyxx













w

w

ww

ww

www

 

 

Donde: 

1) resulta de emplear una notación equivalente para la ec. (2.2). 

2) Es la condición de cero amplitud del desplazamiento cuando x toma los valores 0 

y a, para todo y de 0 a b, en un tiempo arbitrario. 

(2.3) 
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3) Condición de cero amplitud del desplazamiento cuando y toma los valores 0 y b, 

para todo x entre 0 y a, en un tiempo arbitrario. 

4) Se refiere que en un tiempo igual a 0, para cualquier valor de x entre 0 y a, y para 

cualquier valor de y de 0 a b hay una deflexión inicial. 

5) Para la combinación arbitraria de x, y y t, la derivada de la amplitud de 

desplazamiento es cero. 

 

Usando el método de separación de variables [8], se propone como solución para 

w(x,y,t): 

 

)t(T)y,x(F)t,y,x( w  

 

Al sustituir esta expresión en la ec. (2.2), se obtiene: 

 

)TFTF(cTF yyxx

2   

 

donde lo subíndices xx y yy denotan derivadas parciales y los puntos denotan derivadas con 

respecto a t, ahora dividiendo la ec. (2.5) entre c
2
FT: 

 

)FF(
F

1

Tc

T
yyxx2




 

 

Dado que el lado izquierdo de la ec. (2.6) sólo depende del tiempo y el lado derecho 

es independiente del tiempo, ambos miembros deben ser iguales a una constante; mediante 

análisis se observa que valores positivos o iguales a cero asignados a esta constante 

provocan que la solución de cero, por lo cual únicamente valores negativos de esta 

constante satisfacen las condiciones w=0 en la frontera de la membrana. 

 

2

yyxx2
)FF(

F

1

Tc

T



 

 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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De la expresión anterior, ec. (2.7), hay dos ecuaciones diferenciales ordinarias. Para 

la función de tiempo se tiene: 

 

 cdonde,0TT 2  

 

y para la función de amplitud se observa que ésta depende de dos variables espaciales x y y: 

 

0FFF 2

yyxx   

 

conocida como la ecuación bidimensional de Helmholtz. La separación de esta ec. (2.9) se 

logra separar proponiendo lo siguiente: 

 

)y(Y)x(X)y,x(F   

 

que al sustituir en la ecuación de Helmholtz, ec. (2.9), se obtiene: 

 

)XY
y

Y
X(Y

x

X 2

2

2

2

2










 

 

Para separar variables, ambos miembros se dividen entre XY, encontrándose: 

 

)Y
y

Y
(

Y

1

x

X

X

1 2

2

2

2

2










 

 

Los miembros de derecha e izquierda deben ser igualados a una constante, la cual 

debe ser negativa por lo explicado previamente para la ec. (2.7). 

 

22

2

2

2

2

)Y
y

Y
(

Y

1

x

X

X

1










 

 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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Al separar la ec. (2.13) se obtienen dos ecuaciones diferenciales lineales ordinarias 

para X y Y: 

 

02

2

2





X

x

X
  

y 

 

2222

2

2

donde,0Y
y

Y





 

 

Ahora la ecuación de desplazamiento se encuentra en términos de tres funciones, 

por lo planteado originalmente en la ec. (2.4) y (2.10). 

 

)t(T)y(Y)x(X)t,y,x( w  

0Tc)(T

0Y"Y

0X"X

222

2

2









 

 

Donde  y  son constantes obtenidas al llevar a cabo el método de separación de variables. 

 

Las soluciones de las ecuaciones diferenciales (2.4) son: 

 

   tccosFtcsenET

)y(cosD)y(senHY

)x(cosB)x(senAX

2222 





 

 

En donde A, B, H, D, E y F son constantes arbitrarias que se obtienen a partir de las 

condiciones de frontera y de las condiciones iniciales, las cuales se presentan en la ec. (2.3), 

aplicando éstas se tiene que: 

(2.16) 

(2.17) 

(2.14) 

(2.15) 
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B=D=0, obtenido de la condición dos y tres cuando x=0 y y=0. 

doscondiciónladeaxcuando,...,2,1m;
a

m



  

trescondiciónladebycuando,,...2,1n;
b

n



  

E=0, se obtiene de la condición cinco. 

 

Consecuentemente sustituyendo las soluciones de las funciones X, Y y T para 

obtener la solución de w(x,y,t). 

 








 







 













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



 b
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a
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sen

b

n

a

m
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1m 1n
2

2

2

2

mnw  

 

Por último, usando la condición cuatro de la ec. (2.3): 

 








 







 








 b

yn
sen

a

xm
senA)y,x(F

1m 1n

mn  

 

La ec. (2.19) representa una doble serie de seno de Fourier para f(x,y). De la teoría 

de series de Fourier, los coeficientes pueden ser encontrados por las propiedades de 

ortogonalidad [7]: 

 








 







 
   dd

b

n
sen

a

m
sen),(f

ab

4
A

a

0

b

0

mn  

 

La frecuencia de la vibración para este caso es [8]: 

 

2

2

2

2

b

n

a

m

2

c

2
f 




  

 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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En el caso de que a=b implica una no-unicidad de la frecuencia asociada a cada 

forma modal, es decir mn=nm. 

 

Una vez resuelta de la ec. (2.19) se completa la solución para el movimiento de 

vibración libre de la membrana con geometría rectangular: 

 

















 







 


1m 1n

mn )t(cos
b

yn
sen

a

xm
senA)t,y,x(w  

 

La forma de los patrones modales, provocados por ec. (2:22), se expone en la fig. 

2.4, donde se observa cero deflexión en las llamadas líneas nodales (marcadas con las 

flechas). 

 

 

 

Fig. 2.4.-Cuatro combinaciones de modos (m) y nodos (n) en una membrana 

rectangular [7]. 

 

En la fig. 2.4 se eligió a x como la dirección modal, donde se presentan los modos, y 

la dirección nodal, referida a los nodos, como y; se puede observar cuando m=1 y n=1 (caso 

simétrico) se refiere a una media onda a través de una membrana, cuando m=2 y n=1 (caso 

antisimétrico), sería una onda completa en la dirección modal y media onda en la dirección 

(2.22) 
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nodal (caso parecido a m=1 y n=2) y cuando m=2 y n=2 se tiene una onda completa en 

cada dirección; en todos los casos mencionados se cumple la condición de frontera. 

 

2.2 Membrana circular. 

 

Para este tipo de geometría se siguen usando los parámetros de nodos y modos, pero 

también son conocidos como círculos nodales y diámetro nodal respectivamente; donde el 

valor mínimo de n es 1, que sería la representación de una media onda en la superficie de la 

membrana. Pero a diferencia de la membrana rectangular, el valor de modo (m) puede 

tomar el valor de 0. Esto lleva a que en la oscilación de la geometría el centro no se 

mantenga fijo, a diferencia de lo que ocurriría en el caso de m>0. 

 

Para la membrana circular se emplea una ecuación similar a la utilizada en la 

rectangular (ec. 2.22), pero la diferencia fundamental es que consiste de un sistema radial 

transversal que usa como variables espaciales a la coordenadas r y . 

 

En la fig. 2.5 se muestran algunas representaciones de diferentes combinaciones de 

modo y nodo [9], donde la parte sombreada de las figuras representan desplazamientos 

negativos: 

 

Fig. 2.5.- Modos de vibración en una membrana circular (m,n) [9]. 



16 

 

 

2.2.1 Respuesta a un pulso de onda. 

 

Para la simulación de la respuesta a una excitación de un pulso se considerará la 

membrana con geometría circular. 

 

Aunque existen diversas funciones de las formas geométricas que representan un 

pulso de onda, por las restricciones físicas de la membrana circular, debe ser una curva 

suavizada y continua la que represente la excitación que genere el pulso de onda. Además, 

para simplificar el análisis, se elige el inicio de la excitación en el centro de la membrana, 

para tener una propagación radial uniforme. 

 

Para el pulso, fig. 2.6, se buscó una ecuación en la que se observe, el momento en 

que inicia la excitación de la membrana en el centro, como viaja de forma radial y 

uniforme, y la forma en que el pulso desaparece al alcanzar el borde de la membrana 

circular. Por tal motivo se seleccionó la ecuación de la función gaussiana para el centro, y 

su forma sesgada, para el viaje y extinción de la onda. 

 

La ecuación se describe en las fases del impacto, viaje y extinción de la onda, con 

su respectiva expresión, ec. (2.23). 

 

Fig. 2.6.- Pulso de onda [10]. 
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)Grexp(A)t,r(f 2

p   

Donde: 

r es la posición radial donde se localiza el pulso en la membrana circular. 

Ap es una variable que representa la amplitud del pulso, que depende de la posición 

y del tiempo. 

G controla que tan rápido la amplitud toma el valor de cero en el extremo del pulso. 

El signo negativo antes de Ap solo es un arreglo para que el impacto, el viaje y la 

extinción de la onda, se produzca en la parte negativa del eje z. 

 

En el impacto, la forma de la ec. (2.23) se ajusta de manera que el punto central se 

mueve, hasta alcanzar la amplitud de desplazamiento máximo, mientras todos los puntos en 

cada una de las direcciones radiales se mueven de acuerdo a la ecuación mientras el tiempo 

varía, fig. 2.7. 

 

 

 

Fig. 2.7.- Ecuación de impacto representado en diversos tiempos, gráfica obtenida con 

Matlab. 

 

(2.23) 
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En el pulso viajero de onda, fig. 2.8, el ajuste que se hace en la ecuación es con 

respecto a la forma de una onda viajera, es decir, vtrr '  ; donde 'r  es la coordenada 

referida a un marco de referencia que se mueve junto con la onda con una rapidez v , y r  es 

la coordenada referida a un marco inercial fijo. 

 

 

 

Fig. 2.8.- Ecuación de pulso viajero, mostrando diversos tiempo, gráfica 

obtenida con Matlab. 

 

Finalmente, para la extinción de la onda, se busca que la amplitud decrezca, pero 

que la onda siga viajando, ya que al trabajar con la ec. (2.23), no se logró alcanzar la 

amplitud de desplazamiento cero en el extremo de la dirección radial, con una sola 

ecuación, se decidió seccionar en dos partes, empleando la misma ec. (2.23). 

 

Una primera parte, que continua con el movimiento previo de la onda viajera, fig. 

2.8; y la otra parte para alcanzar la amplitud de desplazamiento cero. Sin embargo, fue 

necesario asignar parámetros diferentes para cada parte en la ec. (2.23) para que no se 

apreciará el cambio al unirlas, obteniendo una función seccionada, en la que el punto de 
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unión corresponde al pico para cada una de las gráficas en función del tiempo que se 

muestran en fig. 2.9. 

 

 

 

Fig. 2.9.- Ecuación de extinción del pulso, mostrando diversos tiempos, gráfica 

obtenida con Matlab. 

 

 

2.2.2 Respuesta a un tren de onda. 

 

Para esta parte se empleó la ec. (2.23) con los parámetros empleados en la parte 

correspondiente al impacto en el pulso de onda y después para el viaje de la onda se 

representó con la ec. (2.24), con la finalidad de que después del impacto la onda se repitiera 

de forma continua, sin desaparecer, por lo que se utilizó la función periódica, fig. 2.10. 
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Fig. 2.10.- Viaje de la onda, gráfica obtenida con Matlab. 

 

)vtkr(senA)t,r(f o   

Donde: 

Ao es la amplitud de la onda 

k es una constante  que controla la longitud de onda 

 

2.3 Placa rectangular. 

 

Una placa es un cuerpo sólido limitado por dos superficies. La distancia entre las 

dos superficies define el espesor de la placa, fig. 2.11, que se supone que es pequeño en 

comparación con las dimensiones laterales, tales como la longitud y anchura en el caso de 

una placa rectangular y el diámetro en el caso de una placa circular [3]. 

 

La vibración de las placas es importante en el estudio de los sistemas prácticos, tales 

como cubiertas de puentes, estructuras hidráulicas, tapas de recipientes a presión, 

pavimentos de carreteras y pistas de aeropuertos, las cubiertas de buques, aviones, misiles y 

piezas de la máquina [3]. 

(2.24) 
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Fig. 2.11.- Borde inclinado de una placa, fuerzas de corte y momentos resultantes [3]. 

 

Para una placa simplemente apoyada en sus lados las condiciones de frontera deben 

satisfacer las siguientes ecuaciones: 

 

band0yfor0)t,y,x(M)t,y,x(

aand0xfor0)t,y,x(M)t,y,x(

y

x





w

w
 

 

en un t≥0, fig. 2.11, donde M son los momentos resultantes; y w(x,y,t) es la amplitud del 

desplazamiento, que es función de F(x,y) y T(t), reescribiendo de esta manera las 

condiciones: 

,0|)
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Fd

dx

Fd
(0)b,0(F
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dx
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(0)0,x(F
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

 

 

(2.25) 

(2.26) 
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Como F es constante a lo largo de los bordes x=0 y x=a, d
2
F/dy

2
 será cero a lo largo 

de estos extremos, similarmente d
2
F/dy

2
 será cero a lo largo de los bordes de la placa y=0 y 

y=b. Entonces la ec. (2.26) puede simplificarse como: 

 

0)b,x(
dy

Fd
)b,x(F)0,x(

dy

Fd
)0,x(F

0)y,a(
dx

Fd
)y,a(F)y,0(
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Fd
)y,0(F

2

2

2

2

2

2

2

2


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De la teoría [3] se toma la solución de la función F(x,y): 

 









)ycosh()xcosh(A)y(senh)xcosh(A

)ycosh()x(senhA)y(senh)x(senhA

)ycos()xcos(A)y(sen)xcos(A

)ycos()x(senA)y(sen)x(senA)y,x(F

87

65

43
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Aplicando las condiciones de frontera, se encuentra que las constantes A, 

exceptuando A1, son cero, adicionalmente se obtienen dos ecuaciones que  y  debe 

satisfacer: 

 

0)b(sen

0)a(sen




 

 

Entonces la solución de la ecuación F(x,y) es: 

 


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
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A la ec. (2.30) se le agrega la solución a la función T(t), para obtener la ecuación de 

amplitud de desplazamiento: 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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)]t(senB)t(cosA[
b

xn
sen

a
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sen)t,y,x( 
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Donde A y B son constantes que dependen de las condiciones de frontera de placa. 

Se observa la similitud entre la ec. (2.31) con la ec. (2.22) para la membrana rectangular. 

 

La diferencia esencial entre vibración de una membrana y una placa delgada es que 

en una membrana la fuerza restauradora se debe por completo a la tensión aplicada a la 

membrana, en tanto que en la placa delgada la fuerza restauradora se debe por completo a 

la rigidez flexionante de la placa, cuando no se aplica tensión. Esta misma diferencia existe 

entre las fuerzas restauradoras en cuerda y barras. 

 

Para la simulación de placa se tomó en cuenta la construcción con su espesor, 

aunque las dimensiones de la superficie con respecto a su espesor son más grandes, y la 

restricción impuesta es que se mantenga fijo el borde, fig. (2.12a). 

 

En el caso donde se tiene que solo un punto es fijo en el borde (una línea de la 

sección trasversal), fig. (2.12b), el área de esta sección es perpendicular al plano x-y, y se 

mueve de manera que es siempre normal a la tangente de la curva que describe el 

movimiento de los puntos sobre la superficie. 

(2.31) 
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(a)

(b) 

 

Fig. 2.12.- Sección transversal de la placa; a) área de extremo fijo, b) una línea fija en 

extremo. 

 

Teniendo la metodología referente a cada caso de estudio se procedió a aplicarlo en 

la plataforma de ADEFID para llevar a cabo las simulaciones requeridas. 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

SIMULACIÓN EN ADEFID 

 

 

 

“Debes tomar tu trabajo en serio, pero no a ti. Ésa es la combinación perfecta.” 

Judi Dench 

 

 

3.1 Introducción 

3.2. Membrana rectangular. 

3.3 Membrana circular. 

3.3.1 Excitación con un pulso (o respuesta a un pulso). 

3.3.2 Respuesta a un tren de onda. 

3.4 Geometría placa rectangular. 

3.5 Simulación en ADEFID. 
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3.1 Introducción 

 

Debido a la dificultad de comprender y visualizar la apariencia que tendría una 

superficie bidimensional sometida a vibración en ambas direcciones, se busca implementar 

una herramienta de simulación computacional mediante la cual se pueda observar los 

diferentes modos de vibración de la superficie. El módulo a desarrollar deberá contar con la 

opción de manipular los parámetros que definen la construcción geométrica que se genera. 

Para representar los diferentes modos de vibración en membranas y placas, la 

respuesta de una membrana a la excitación de un pulso y a un tren de onda en un entorno 

que fuera interactivo con el usuario se emplearon instrucciones de Visual Studio® C++ 

[11]. Con este propósito se implementaron ciclos para la evaluación en cada punto del 

mallado de las funciones solución que nos presentan la amplitud de desplazamiento; y 

estructurado con los conceptos de programación orientada a objetos para la construcción de 

las superficies correspondientes a cada caso, así como la presentación de éstas en el 

monitor.  

 

Estos programas fueron adaptados en los módulos VIBRATO [12-13]; 

implementados con las librerías de ADEFID [1] que se han desarrollado para la simulación 

de fenómenos vibratorios. 

 

3.2 Membrana rectangular. 

 

La forma en la que se conceptualizó la representación de la superficie de la 

membrana rectangular fue mediante el uso de la herramienta de GL_POLYGON [14], que 

gracias a ésta, únicamente es necesario definir los vértices de polígonos que se asignan 

mediante ciclos for anidados [11], el mallado se considero dividido en elementos 

agrupados en filas y columnas. 

 

Para el primer ciclo se utilizan las variables i y j, donde j es el j-ésimo elemento de 

la columna creada por el ciclo, fig. 3.1, el cual define la longitud de la placa e i permite 

moverse dentro del elemento, por lo cual solo varía de 0 a 1, por lo que i crea el cuadrado 
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base y j lo repite en una dirección, creando así una tira cuadriculada (esto se controla 

mediante un ciclo for de i dentro de un ciclo for de j). 

 

Fig. 3.1.- j- ésimo polígono. 

 

Para el ancho se establece la variable k, con la cual se hará un tercer ciclo for, fig. 

3.2, en el cual están incluidos el de i y j, así se genera la superficie. 

 

Fig. 3.2.- Cuadrícula de la superficie. 

 

Una vez obtenida la superficie, es necesario hacer un arreglo para que cada vértice 

tenga el valor correspondiente de amplitud en el eje z, para esto se usa la ec. (2.22), donde 

el arreglo mencionado se debe hacer en el argumento de las funciones que incluyen las 
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variables espaciales. Debido a que se debe establecer la ecuación para cada punto de la 

cuadrícula (vértice), la ecuación de desplazamiento está dentro del ciclo de i y se presenta a 

continuación:  
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Donde (i+k)/K y j/J de la ec. (3.1a) es el arreglo que corresponde al uso de 

coordenadas de cada vértice, y (j+1)/J de la ec.(3.1b) corrige la posición de dos de los 

vértices del k- ésimo elemento, tomando así la coordenada que le corresponde, fig. 3.3. 

 

Fig. 3.3.- Un elemento de la superficie en el espacio. 

 

Una vez terminada la construcción de los elementos de la superficie de la 

membrana, fig. 3.3, se prosigue con la simulación de la vibración sobre la membrana 

circular. 

 

 

 

(3.1a) 

(3.1b) 
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3.3 Membrana circular. 

 

Para la construcción de esta geometría se sigue una metodología similar a la de 

membrana rectangular, pero en vez del uso de columnas y renglones, es mediante anillos y 

sectores dentro de éstos. Al generar cada uno de los sectores internos del primer anillo del 

círculo hay una coincidencia de posición en dos puntos, por lo que la función 

GL_POLYGON genera una figura triangular, como se  muestra en fig. 3.4: 

 

 

Fig. 3.4.- Polígono base del centro de la superficie circular. 

 

Una vez realizado el centro, el ciclo continúa generando los siguientes anillos de la 

superficie, pero ahora la geometría es trapezoidal, como se muestra en la fig. 3,5, donde p 

es el número de particiones escogido. 

 

 

 

Fig. 3.5.- Primeros elementos de un sector circular. 
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Al definir el número de sectores (p) se debe considerar la semejanza con un círculo, 

por lo cual en esta parte se fue probando con diferentes valores hasta encontrar el más 

adecuado para generar el contorno circular deseado. Este control se realizó a través de la 

variable discretizada j; mientras que el control radial del ciclo se realizó mediante la 

variable k, la cual podrá modificarse cuando el usuario quiera definir el diámetro de la 

membrana. 

 

En vista de que se utiliza a un sistema de coordenadas radial-transversal, (r, ); se 

debe hacer un cambio al sistema cartesiano para el uso de la función glVertex3f ( x, 

y, z) [14], por lo cual se usan las transformaciones siguientes: 

 

 cosR)kr(01.0x  

 senR)kr(01.0y  

 

donde 
128

2 j
  , debido a que el número seleccionado de sectores (p) es 128, ya que 

con un valor menor no se aprecia una circunferencia, y un valor mayor solo representaría 

complicaciones a la hora de ejecutar toda la geometría. 
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Como se puede observar en las ecuaciones (3.2) y (3.3), la única diferencia entre 

éstas son en los argumentos de las funciones trigonométricas. La ecuación (3.2) se refiere al 

inicio del sector y la ecuación (3.3) al final del sector, y debido a que cada uno de estos 

tiene un valor de /64, esta cantidad se le suma al argumento del último par de ecuaciones. 

A su vez; para controlar los sectores se usa la variable discretizada r, que toma valores de 0 

a 1 y de 1 a 0. 

(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 
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Una vez generada la superficie se procede a implementar las ecuaciones de amplitud 

de desplazamiento, en este caso son cuatro ecuaciones a considerar, que parten de la forma 

de la ec. (2.22). Así, la primera ecuación en cada par corresponde al caso cuando el valor 

del modo (m) es igual a cero, donde se observa en las ecs. (3.4a) y (3.5a) que el argumento 

de la función seno es (n-0.5). El desfase en el argumento es debido a que sin este arreglo al 

simularlo no se formaría la curva de la onda en la superficie, es decir el centro de la 

membrana tendría cero desplazamiento: 

 

primer sector: 

 

m=0 

)t(cos
K

)kr(
)5.0n(sinA)t,,r( o 











w  

m≠0 

)t(cos)m(sen
K

)kr(n
sinA)t,,r( o 







 
w  

 

segundo sector: 

 

m=0 

)t(cos
K

)kr(
)5.0n(sinA)t,,r( o 











w  

m≠0 

)t(cos
64

msen
K

)kr(n
sinA)t,,r( o 















 








 
w  

 

En el segundo sector la única diferencia es en el argumento de los senos, y esto es 

debido a lo mencionado en la formulación de la ec. (3.3). 

 

 

(3.4a) 

(3.4b) 

(3.5a) 

(3.5b) 



31 

 

3.3.1 Excitación con un pulso (o respuesta a un pulso). 

 

La construcción de la superficie circular es la ya explicada anteriormente, ahora 

para la simulación de el pulso se requieren las 3 etapas mencionadas en la sección 2.3, en 

donde las diferencias de cada una de estas etapas reside en las ecuaciones de amplitud de 

desplazamiento, que dependen en que instante de tiempo se encuentra la simulación para 

entrar en acción. 

Para la simulación en el momento del impacto se parte de la ec (2.23), donde los 

términos Ap y Gr
2
 se re-escriben para ajustarse al rango de amplitud de la simulación y al 

tiempo en el cual transcurre ésta, de aquí se obtiene la ec. (3.6); por último se da un periodo 

en el cual esta ecuación controle la simulación, se toma como un tiempo inicial igual a 0 s y 

el tiempo final ≤ 1.6 s. 

]bb[exptA625.0)t,r( ow  

2)kr(01.0bb   

El argumento, bb, de la función exponencial engloba la forma con la que tiende a 

cero la función con el valor arbitrario de 0.01 se controla esta tendencia y con r+k se 

controla la de posición radial. La constante de 0.625 únicamente es un control que actúa 

con el tiempo para asegurar llegar al valor de amplitud de desplazamiento máxima 

establecida a la hora de la simulación. 

Una vez transcurrido el periodo de tiempo asignado para la simulación del impacto, 

se continua con la simulación para el viaje de la onda, donde el tiempo inicial es mayor a 

1.6 s (se debe a que es el tiempo final del impacto) y el tiempo final ≤ 4.8 s. 

2])6.1t(vkr[01.0bb   

]bb[exptA)t,r( ow  

El cambio en el valor del argumento bb es debido a que la onda no se considera que 

inicia en el origen (centro del círculo), sino, desde una posición trasladada respecto al 

(3.6) 

(3.7) 
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origen, como se ilustra en la fig. 3.6, durante este periodo de tiempo la amplitud permanece 

constante, la corrección necesaria es el periodo de tiempo que dura el impacto. 

 

Fig. 3.6.- Representación de una onda viajera [10]. 

 

Finalmente la simulación de la etapa de extinción de la onda ocurre con un tiempo 

inicial mayor a 4.8 s (tiempo final del viaje de la onda) y tiempo final ≤ 6.4 s. 

 

2)]8.4t(v5.78)kr(1.1[01.0bb   

)bb(exp)t4.6(A625.0)t,r( o w  

 

2)]8.4t(v145)kr(2[01.0bb   

)bb(exp)t4.6(A625.0)t,r( o w  

 

Para esta parte de la simulación se secciona en dos partes la ecuación que gobierna 

este periodo de tiempo, sección 2.3, donde la ec. (3.8) es el viaje de la onda, y la ec. (3.9) se 

encarga de contrarrestar esa onda, formando así la extinción del pulso. Las constantes que 

(3.8) 

(3.9) 
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aparecen en la ecuación fueron obtenidas mediante prueba y error para ajustar la simulación 

(salto de un movimiento a otro, tiempo de extinción, etc.). 

 

3.3.2 Respuesta a un tren de onda. 

 

Para la simulación en esta parte se trabajo sobre la superficie de la membrana 

circular, utilizando para la ecuación de amplitud de desplazamiento una función senoidal 

para la mayor parte de la simulación. Sin embargo para el inicio se define un tiempo de 0 s 

a 1.6 s en el cual se realiza un “impacto” en el centro de la superficie, el cual representa el 

inicio de la excitación, y debido a esto se emplea la ec. (3.6), transcurrido este periodo la 

ec. (3.10) es la que rige la simulación. 

 

]5.0tv)rk(1.0[senA)t,r( o w  

 

Donde el valor de 0.1 es debido a la longitud de onda y 0.5π es el desfasamiento. 

 

3.4 Geometría placa. 

 

Debido a que en el módulo de placa se debe apreciar los modos de vibración en 

ambas superficies, para la construcción de la geometría se partió de un paralepípedo, con 

las caras de los bordes de éste simplemente apoyados. 

 

Para las superficies, superior e inferior de la placa, se emplea el código realizado 

para la membrana rectangular, pero habiendo una diferencia entre este código y el 

requerido para la placa. En este caso la función glVertex3f(x, y, z) para la 

superficie superior debe modificarse en el valor de z, ya que este parámetro debe 

representar la amplitud de desplazamiento considerando el espesor que separa ambas 

(3.10) 
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superficies, por lo que se suma el espesor deseado en la placa, como se muestra a 

continuación: 

 

glVertex3f ( 0.01*b*i, 0.02*d*j, z); 

 

glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z+espesor); 

 

Donde los productos que se observan en las posiciones de x y y, se usan únicamente 

para lograr el trazado de cada elemento de la superficie. 

 

3.5 Simulación en ADEFID. 

 

Una vez concebida la metodología para llevar a cabo la representación de las 

superficies (membrana y placa) que serán sometidas a vibración, el siguiente paso fue 

implementar la simulación en la plataforma ADEFID. En primer término se requiere definir 

(o generar) un proyecto, en el caso de este trabajo se contaba con un proyecto previo 

nombrado VIBRATO, en el cual ya se analizan y simulan la vibración de sistemas de uno y 

dos grados libertad, así como la vibración en cuerdas. 

 

Sobre el proyecto ya existente se definieron las clases CMembrane y CPlate 

como clases derivadas de CMachine. A su vez, por cada clase definida se generan los 

archivos de trabajo "*.h" y "*.cpp". 

 

En el documento Membrane.h se definen todas las variables utilizadas en el control 

de la simulación, las cuales son m_time_0 y t_pausa, la primera se encarga de guardar 

el tiempo en que se inicia la simulación y la segunda guarda el valor de tiempo que lleva 

suspendida la animación . También se declaran en el archivo .h las funciones utilizadas para 

construcción de la geometría como lo son DrawGeometry() que guarda el algoritmo 

correspondiente a los casos de la membrana y DrawPulse() que construye el pulso y el 

tren de ondas, las cuales serán llamadas en la función RenderUScene(), la cual se 

encarga de presentar al usuario la construcción hecha. 
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Para el módulo de la placa se definieron los archivos Plate.cpp y Plate.h, que 

guardan similitudes en su conformación con los de membranas, la diferencia radica en que 

solo usa una función de dibujo para construir la placa. 

 

El algoritmo implementado, fig. 3.7, para la formación inicial de cada superficie de los 

casos se representa con el siguiente diagrama de flujo. 

 

 

Fig. 3.7.- Diagrama de flujo de la membrana rectangular. 

 

Donde k=100 y j=50 son valores seleccionados de pruebas para que se apreciara la 

curva suavizada de la onda. La fig. 3.8 representa la primera columna denotada por el ciclo 

de j. 
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Fig. 3.8.- Primer ciclo de la formación de la membrana rectangular. 

 

Una vez implementado el código correspondiente al diagrama de flujo en el 

programa se obtiene la superficie deseada, fig. 3.9, cabe mencionar que para la membrana 

circular se sigue el mismo algoritmo mostrado en la fig.3.7. 

 

 

 

Fig. 3.9.- Construcción final de la malla de la membrana rectangular. 
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Una vez teniendo la superficie de trabajo se prosigue con la implementación en el 

código de la ecuación de amplitud de desplazamiento, para que al correr la simulación la 

superficie tome la forma requerida, en fig. 3.10 se observa una prueba inicial de este paso. 

 

 

 

Fig. 3.10.- Modelo geométrico final. 

 

En la fig. 3.11 se muestra uno de los resultados de la membrana circular al variar el 

número de divisiones para la circunferencia y el número de polígonos que se crean en la 

superficie. Como se observa la geometría que se generó se alejaba del resultado deseado. 

Debido a lo anterior se aumentó el número de divisiones empleadas, hasta llegar al 

resultado mostrado en la fig. 3.12, la cual también representa la apariencia de la membrana 

una vez añadida una de las ecuaciones de desplazamiento que rige este caso.  
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Fig. 3.11.- Primera selección de divisiones para membrana circular. 

 

 

 

Fig. 3.12.- Superficie final de la membrana circular. 
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Teniendo la geometría se prosigue en la representación visual de la oscilación (tanto 

para el caso de membrana como el de placa), para lo cual se idearon dos opciones de 

presentación. La primera consta de un control de color que permite que la onda tome dos 

diferentes colores dependiendo si sus valores de amplitud son positivos o negativos, esto 

con el fin de mostrar los valles y picos formados por la vibración. 

 

Las figuras 3.13, 3.14, 3.15 y 3.16 muestran la forma final que toman las geometrías 

de las membranas y la placa seleccionando la primera opción de la simulación, el resultado 

final es una representación tridimensional de dos medios continuos sometidos a vibración, 

donde es fácil apreciar la configuración que toman al manipular los elementos que influyen 

en sus respuestas. 

 

 
 

Fig. 3.13.- Membrana rectangular primera opción. 
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Fig. 3.14.- Membrana circular primera opción. 

 

 

 

Fig. 3.15.- Tren de onda primera opción. 
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Fig. 3.16.- Placa primera opción. 

 

En el caso de la excitación de un pulso no se empleo el mismo arreglo que genera la 

coloración visualizada en las figuras mostradas anteriormente, esto es debido a la forma de 

la ecuación planteada, la cual provoca que los valores de amplitud sean negativos. Ya que 

el arreglo original se realizó de manera que la función glColor3f [14] cambie su 

configuración cuando el valor de la amplitud varié, en el pulso esta variación está 

restringida únicamente a dos opciones, las cuales muestran la onda viajera de un color 

diferente a la superficie que se mantiene sin movimiento, fig. 3.17. 
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Fig. 3.17.- Pulso con controlador de color. 

 

La segunda opción de presentación es mediante las normales geométricas de la 

estructura simulada, para lo cual se calculó la normal en cada vértice de la superficie. La 

fig. 3.18a muestra un elemento de la superficie rectangular que sirve de base para el cálculo 

de las normales. A su vez la fig. 3.18b muestra la orientación de cada vector z, que es 

requerido para realizar el cálculo ya que representa la ubicación espacial de cada vértice. 

 

Fig. 3.18.- Normales de un cuadrado, a) vértices de un cuadrado, b) posición de los 

puntos de los vectores normales (pvn[]). 

 

Para el desarrollo del cálculo de las normales se empieza por definir el cambio de la 

posición en dos direcciones, representados con x y y: 
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,
50

d
y,

100

b
x  donde b es la longitud de la superficie y d es el ancho de ésta. 

 

Se definen las variables A, B, C, D, E, F, G y H, lo cual servirá para representar con 

mayor facilidad las componentes del vector z. 

 

A=x, B=z1, C=y, D=z2, G=A, E=C, F=z3, H=z4 

 

Donde los z se refieren al cambio en el eje z entre cada vértice, siguiendo el orden 

mostrado en la fig. 3.18b, los puntos del vector normal (pvn[]) guardan los valores 

resultantes de la ecuación de amplitud de desplazamiento durante la simulación. 

 

 

z1=pvn[1]-pvn[0] 

z2= pvn[2]-pvn[0] 

z3= pvn[3]-pvn[1] 

z4= pvn[3]-pvn[2] 

 

Las componentes de cada vector z, fig. 3.18b, son: 

 

k̂HîGz

k̂FĵEz

k̂DĵCz

k̂BîAz

4

3

2

1

















 

 

Teniendo estas expresiones se procede a realizar los productos cruz 

correspondientes a cada vértice para obtener las normales. 
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Primer vértice: 

k̂
C0

0A
ĵ

D0

BA
î

DC

B0

DC0

B0A

k̂ĵî

zz 21 


 

k̂ACĵADîBCzzv 21n 


 

db)02.0)(01.0(AC]2[n

]}0[pvn]2[pvn{b01.0AD]1[n

]}0[pvn]1[pvn{d02.0BC]0[n

o

o

o







 

Segundo vértice: 

k̂
E0

0A
ĵ

F0

BA
î

FE

B0

FE0

B0A

k̂ĵî

zz 31 


 

k̂AEĵAFîBEzzv 31n 


 

db)02.0)(01.0(AE]5[n

]}1[pvn]3[pvn{b01.0AF]4[n

]}0[pvn]1[pvn{d02.0BE]3[n

o

o

o







 

Tercer vértice: 

k̂
E0

0G
ĵ

F0

HG
î

FE

H0

FE0

H0G

k̂ĵî

zz 34 


 

k̂GEĵGFîHEzzv 34n 


 

db)02.0)(01.0(GE]8[n

]}1[pvn]3[pvn{b01.0GF]7[n

]}2[pvn]3[pvn{d02.0HE]6[n

o

o

o






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Cuarto vértice: 

k̂
C0

0G
ĵ

D0

HG
î

DC

H0

DC0

H0G

k̂ĵî

zz 24 


 

k̂GCĵGDîCHzzv 24n 


 

db)02.0)(01.0(AE]11[n

]}0[pvn]2[pvn{b01.0AF]10[n

]}2[pvn]3[pvn{d02.0BE]9[n

o

o

o







 

 

Una vez teniendo los cálculos requeridos para las normales se añaden en el 

algoritmo que genera las construcciones mostradas en las figuras 3.19 y 3.20, las cuales 

aunque presentan una visualización de la superficie con mayor detalle, provocan más 

tiempo de procesamiento debido a la iteración de las ecuaciones. 

 

 

 

Fig. 3.19.- Membrana rectangular segunda opción. 
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Fig. 3.20.- Placa segunda opción. 

 

En el caso de la geometría circular, se debe realizar un nuevo cálculo de las 

normales, fig. 3.21, conservando únicamente los vectores pvn[] definidos anteriormente 

para los z. 

 

 

Fig. 3.21.- Normales de un polígono. 
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Primero se definen los cambios en las coordenadas radial y transversal: 

,
64

,
100

R
r


 se prosigue con los x, y y s, donde los dos primeros son 

cambios en coordenadas cartesianas y el segundo se refiere al cambio en la longitud de 

arco. 







)rr(y,rs

rseny,rseny

cosrx,cosrx

1211

2211

2211

 

 

rkr1  , donde la k es el número de divisiones en la dirección radial. 

Los ángulos, , , 2 están definidos por: 

 













12

128

65

128

63

2

64

2

 

 

Para obtener las componentes de los vectores z primero se establecen las siguientes 

variables: 

2

2

1

1

1

1

1

1

senR01.0H

cosR01.0G

)(sen)1k(R01.0F

)cos()1k(R01.0E

)(senRk01.0D

)cos(Rk01.0C

senR01.0B

cosR01.0A

















 

 

Una vez teniendo esto, representar las componentes es más sencillo. 
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k̂zĵHîGz

k̂zĵFîEz

k̂zĵDîCz

k̂zĵBîAz

44

33

22

11

















 

 

Primer vértice: 

k̂
DC

BA
ĵ

zC

zA
î

zD

zB

zDC

zBA

k̂ĵî

zz
2

1

2

1

2

121 















 

k̂]CBAD[ĵ]zAzC[î]zDzB[zzv 211221n 


 

Asignando ahora los componentes del vector normal: 

CBAD]2[n

zAzC]1[n

zDzB]0[n

o

21o

12o







 

Segundo vértice: 

k̂
FE

BA
ĵ

zE

zA
î

zF

zB

zFE

zBA

k̂ĵî

zz
3

1

3

1

3

131 















 

k̂]BEAF[ĵ]zAzE[î]zFzB[zzv 311321n 


 

BEAF]5[n

zEzA]4[n

zFzB]3[n

o

13o

13o







 

Tercer vértice:  

k̂
FE

HG
ĵ

zE

zG
î

zF

zH

zFE

zHG

k̂ĵî

zz
3

4

3

4

3

434 














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k̂]EHGF[ĵ]zGzE[î]zFzH[zzv 344321n 


 

EHGF]8[n

zGzE]7[n

zFzH]6[n

o

34o

43o







 

Cuarto vértice: 

k̂
DC

HG
ĵ

zC

zG
î

zD

zH

zDC

zHG

k̂ĵî

zz
2

4

2

4

2

424 















 

k̂]CHGD[ĵ]zGzC[î]zDzH[zzv 244221n 


 

CHGD]11[n

zGzC]10[n

zDzH]9[n

o

24o

42o







 

 

Obteniendo las relaciones necesarias para las normales, éstas se implementan en el 

código para los casos de membrana circular, pulso y tren de ondas, obteniendo así lo 

mostrado en las figuras 3.22 a la 3.24, donde su implementación mejora la calidad de la 

representación visual de la simulación. 

 

 
 

Fig. 3.22.- Membrana circular segunda opción. 
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Fig. 3.23.- Pulso segunda opción. 

 

 

 

Fig. 3.24.- Tren de ondas segunda opción. 

 

Como se menciona al principio de esta sección las variables encargadas de controlar 

la simulación son m_time_0 y t_pausa, la primera permite empezar la simulación 

guardando el tiempo en el que se selecciona el botón de inicio, la segunda variable actúa 

únicamente cuando el usuario selecciona la opción de salida 
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En el siguiente diagrama de flujo, fig.3.25, se presenta el funcionamiento interno de 

estas variables y su acción en los tres estados de la animación. El primer estado lo define 

PIN que es el inicio de la simulación, luego la instrucción SUSPEND detiene la animación 

y reinicia a la posición de un tiempo igual a cero, y finalmente POUT detiene la simulación 

en la última posición mostrada. Gracias a la variable t_pausa guarda el valor trascurrido 

después de seleccionar la opción, logrando así al volver a presionarlo que muestre la forma 

de la imagen en ese instante. 

 

 

 

Fig. 3.25.- Diagrama de flujo para la animación. 

 

Para concluir con el programa y hacerlo amigable al usuario se requirió crear los 

cuadros de diálogos, fig. 3.26, fig. 3.27 y fig. 3.28, que permitirán al usuario interactuar con 

la interfaz gráfica. En este caso se contó con la metodología mencionada en Peña [15], en la 

cual detalla paso a paso la creación de estos cuadros. 
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Fig. 3.26.- Cuadro de diálogo de membranas. 

 

En la fig. 3.26 se observa el cuadro de diálogo que permite la interacción del usuario 

con las variables para simulación de la vibración en membranas, donde la primera opción 

permite escoger sobre que geometría (rectangular o circular) se desea trabajar; una vez 

seleccionada, la siguiente selección será en qué forma se desea que aparezca la geometría, 

si con los controladores de color o con las normales geométricas. 

 

Las siguientes opciones se refieren a las características que se desea en cada 

geometría, longitud, ancho en el caso de la membrana rectangular y radio en la membrana 

circular; terminada esta selección, se prosigue con los parámetros de vibración; frecuencia, 

amplitud y lo más importante el número de nodos y modos que se desea visualizar. 
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Fig. 3.27.- Cuadro de diálogo de pulso y tren de ondas. 

 

La estructura del cuadro de diálogo mostrado en la fig. 3.27 empleado para el pulso 

y tren de onda se asemeja al de la fig. 3.26, la obvia excepción de que solo considera el 

caso de la geometría circular y además no depende del número de nodos y modos para las 

características de su simulación. 
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Fig. 3.28.- Cuadro de diálogo de placas. 

 

El funcionamiento del cuadro de diálogo para la placa, fig, 3.28, permite la 

construcción de la superficie rectangular mediante la selección de los parámetros 

geométricos de longitud y ancho, agregando la opción de variar el espesor de ésta y 

también incluye la opción para modificar las características de vibración como; amplitud, 

frecuencia, nodos y modos, que influyen en la forma que tomara la superficie en la 

simulación. 

 

De esta forma se ofrece una herramienta de simulación interactiva con el usuario y 

de fácil manejo que permite una visualización clara del fenómeno de vibraciones en medios 

continuos como membranas y placas. 

 

En el capítulo siguiente se presentan los resultados de las diferentes simulaciones 

que fueron implementadas en la plataforma ADEFID. 



 
 

 

 

 

 

 

 

 

 

 

 

RESULTADOS 

 

“'Nada se me ha dado fácilmente, pero no me importa el sacrificio si 

 con él puedo alcanzar el resultado apetecido.” 

María Callas 
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Aplicando los conocimientos sobre la teoría de vibraciones mecánicas en los medios 

continuos de membrana y placa se logró desarrollar en la plataforma ADEFID, dos módulos 

para la visualización de estos fenómenos, lo cual es el objetivo que se buscaba en este 

proyecto de tesis. 

Las geometrías seleccionadas fueron debidas, a que en la literatura, son las que cuentan 

con más información de sus modelos matemáticos y las soluciones correspondientes; y son 

casos de estudio clásicos en cursos de vibraciones mecánicas básicos y avanzados. 

El primer módulo se enfocó en la animación de los modos de vibración en las 

membranas rectangulares y circulares; se optó por la simulación computacional de las 

membranas, debido a la dificultad de lograr visualizar la vibración a partir de los modelos 

matemáticos, lo cual se observa en el segundo capítulo. 

Una vez teniendo el mallado, tanto de los segmentos rectangulares (elementos de la 

membrana rectangular), como de los segmentos circulares (membrana circular), se agrego el 

modelo matemático en el código del módulo de la membrana, y se prosiguió con modificar 

este código para permitir la variación de los parámetros de; amplitud, número de nodos, etc., 

que permiten la construcción de la superficie. 

A pesar de la complejidad de la estructura del código implementado para la creación de 

la superficie, ésta resultó ser flexible, ya que fue posible tomarla como base para adaptarla a 

otros casos.  

Las expresiones empleadas para llevar a cabo la simulación de la vibración en las 

membranas constaban de la información necesaria para la forma que debería tomar durante la 

simulación. Sin embargo, fue necesario incluir algunas adecuaciones dentro de las ecuaciones 

solución para ajustar las coordenadas del sistema cartesiano al sistema radial en el caso de la 

membrana circular. 

La segunda sección del primer módulo surgió de la idea de ampliar el fenómeno que se 

podría observar aplicando vibración en una geometría circular, por lo que se realiza la 

animación del pulso y del tren de ondas. El diseño del algoritmo del primero se considera de 

mayor dificultad debido a la restricción impuesta de extinción de la vibración en el borde de la 
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membrana, es decir amplitud de desplazamiento cero, ya que el segundo consta de una función 

sencilla. 

El segundo módulo consta de una arquitectura más elaborada que el caso de la 

membrana rectangular, sin embargo, se considera que será una herramienta útil si se desea 

ampliar, este módulo, ya que cuenta con las bases necesarias para la geometría y únicamente 

se tendría que modificar las condiciones de los extremos u otras restricciones. 

La facilidad de utilizar estos módulos radica en que el usuario puede observar con 

relativa sencillez las variables que definen el comportamiento del fenómeno vibratorio de cada 

caso (amplitud, nodo, modo, etc.); ya que cuenta con las opciones de visualización y de cómo 

presentar la animación. Además ya que la programación es modular el código es expandible a 

nuevos casos, lo que se discutirá en el capítulo 5, definiendo el nuevo modelo matemático. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

ANÁLISIS/DISCUSIONES 

 

 

"No basta saber, se debe también aplicar; no basta querer, se debe también hacer"  

Johann Wolfgang Goethe 
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Como antecedentes de trabajos en simulación de vibraciones mecánicas se encontraron 

diferentes proyectos, pero todos restringidos a ciertas condiciones, como SimulPhysics de la 

Universidad Nacional de Colombia, sede Medellín [16], que reporta las simulaciones de ondas 

estacionarias, viajera, pulso y vibración en cuerdas,  aunque no lo presentan en una forma 3D. 

Otros ejemplos de simulación encontrados fueron realizados mediante Matlab®, sin 

embargo éstos presentan la solución de ecuaciones diferenciales parciales, y no muestran la 

opción de interactuar en la interfaz. 

La simulación de la vibración en la placa desarrollada para esta tesis se encuentra 

limitada, debido a que no se observan los diversos patrones obtenidos reportados en otros 

trabajos como consecuencia de las vibraciones, figs. 5.1 y 5.2, en los cuales se tendría que 

emplear las mismas condiciones con las que se trabajo para obtenerlos [17]. 

 

 

Fig. 5.1.- Dibujos realizados por Ernst Chladni que muestran los patrones formados por 

arena colocada sobre una placa metálica cuadrada al ser sometida a vibraciones [18]. 
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Fig. 5.2.- Formas adoptadas durante la vibración, con su correspondiente valor de 

frecuencia [19]. 

 

La formación de estos patrones es debido a la variación de la frecuencia de excitación 

aplicada al medio. 

Como trabajo futuro se podría implementar estos patrones en la simulación para placas, 

sin embargo, se necesitaría conocimientos más avanzados de vibraciones y de ecuaciones 

diferenciales parciales, debido a que se cuentan con limitaciones de no conocer el modelo 

matemático que representa la solución de la vibración. 

Otra opción para ampliar el módulo de placas sería con la simulación de modelos 

matemáticos de algunos casos como el simplemente apoyado pero donde la placa no se 

encuentra horizontalmente, o el caso donde las esquinas de la placa se encuentran con 

abrazaderas [4]. 

En el caso de respuesta a un pulso se podría ampliar en el sentido de que la excitación 

no necesariamente tenga que generarse en el centro de la geometría, y que el pulso tome otras 

formas (geometrías diferentes), que se presente más de un pulso en regiones diferentes sobre 

la superficie, modificar las condiciones de frontera para que el viaje y la extinción de la onda 

se presente de diversas formas, etc. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONES 

 

“Cuando parezca que todo está en tu contra,  

recuerda que los aviones despegan contra el viento, no con él.” 

Henry Ford 
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Terminado el análisis de los conceptos que influyen en la vibración, para proceder a la 

simulación, primero se debió crear un mallado dividido en elementos para usar las herramientas 

de OpenGL, logrando construir las bases para las geometrías deseadas. Una vez teniendo el 

mallado, se siguió con la representación de los modos de vibración en las membranas, para lo 

cual ya se contaba con la ecuación de la amplitud de desplazamiento, previamente obtenidas de la 

consulta a la literatura existente. 

 

Debido a que las ecuaciones que representan las solución en cada caso, tenían que tomar 

en cuenta las formas y restricciones que se buscaba representar en cada una de ellas se debió 

ajustar la ecuación; como lo fue en las membranas, se variaron los parámetros de la geometría, el 

número de nodos y modos; así en cada sección se hizo su debida consideración en la ecuación. 

 

En la parte inicial del desarrollo de la tesis el familiarizarse con el manejo de las 

funciones de dibujo consistió en el punto principal para lograr con el menor uso de instrucciones 

la construcción de la superficie buscada, una vez contando con esto, fue necesario idear un ciclo 

que dirigiera el trazado y aplicara en su momento y forma las funciones de dibujo. 

 

Terminada la parte de construcción, la simulación fue en su momento la parte que tomó 

más tiempo, debido a que el control de tiempo tenía que ser desarrollado a partir de funciones ya 

establecidas por el programa base realizado en la plataforma de ADEFID. Sin embargo, el hecho 

que ya estuviera previamente definido al final fue una ayuda para que el control necesario fuera 

establecido con unas pocas instrucciones en los momentos de inicio, pausa y reinicio-fin. 

 

Como cierre del proyecto se queda un conocimiento de conceptos y herramientas que son 

aplicables con fines académicos y pueden servir como base para una expansión ya sea en el 

continuo desarrollo de simulación de vibraciones o en el desarrollo de nuevos temas de estudio. 
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 APÉNDICES 

 

Apéndice A 

 

 Código de primera opción en membrana rectangular 
 

amp=a*cos(t*w); 

 

 switch (p) 

 { 

 case 1: 

  switch (pr) 

  { 

  case 1: 

   for (k=0; k<=100; k++) 

   { 

    if (k>0) 

     glTranslatef(0.01*b, 0.0f, 0.0f); 

     

    for (j=0; j<=50; j++) 

    { 

     glBegin (GL_POLYGON); 

     for (i=0; i<=1; i++) 

     { 

      z=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

      c=abs(z/amp); 

      if (z>0) 

      { 

       glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

      } 

      else 

      { 

       glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

      } 

      glVertex3f ( 0.01*b*i, 0.02*d*j, z); 

     } 

     for (i=1; i>=0; i--) 

     { 

      z=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 

      c=abs(z/amp); 

      if (z>0) 

      { 

       glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

      } 

      else 

      { 

       glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

      } 

      glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z); 

     } 

     glEnd(); 

    } 

   } 

   break; 

  



 

63 

 

 Código de segunda opción en membrana rectangular 
 

Apéndice B 
 
case 2: 

 

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magn1, magn2, magn3, magn4; 

   glEnable(GL_LIGHTING);  SetMaterial(10); 

   for (k=0; k<=100; k++) 
   { 

    if (k>0) 

     glTranslatef(0.01*b, 0.0f, 0.0f); 

     

    for (j=0; j<=50; j++) 
    { 

     glBegin (GL_POLYGON); 

     for (i=0; i<=1; i++) 
     { 

      pvn[i]=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

      pvn[i+2]=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 
     } 

     dz1=pvn[1]-pvn[0]; 

     dz2=pvn[2]-pvn[0]; 

     dz3=pvn[3]-pvn[1]; 

     dz4=pvn[3]-pvn[2]; 

     no[0]=-0.02*d*dz1; 

     no[1]=-0.01*b*dz2; 

     no[2]=0.01*0.02*b*d; 

     magn1=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]); 

     no[3]=-0.02*d*dz1; 

     no[4]=-0.01*b*dz3; 

     no[5]=no[2]; 

     magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]); 

     no[6]=-0.02*d*dz4; 

     no[7]=-0.01*b*dz3; 

     no[8]=no[2]; 

     magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]); 

     no[9]=-0.02*d*dz4; 

     no[10]=-0.01*b*dz2; 

     no[11]=no[2]; 

     magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]); 
 

     for (int xx=0; xx<3; xx++) 
     { 

      vn1[xx]=no[xx]/(float)magn1; 

      vn2[xx]=no[xx+3]/(float)magn2; 

      vn3[xx]=no[xx+6]/(float)magn3; 

      vn4[xx]=no[xx+9]/(float)magn4; 
     } 

     for (i=0; i<=1; i++) 
     { 

      z=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

      if (i==0) 

       glNormal3fv(vn1); 

      else 

       glNormal3fv(vn2); 

      glVertex3f ( 0.01*b*i, 0.02*d*j, z); 
     } 

     for (i=1; i>=0; i--) 
     { 

      z=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 

      if (i==1) 

       glNormal3fv(vn3); 

      else 

       glNormal3fv(vn4); 

      glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z); 
     } 

     glEnd(); 
    } 

   } 

} 

   break;  

glDisable(GL_LIGHTING);  
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Apéndice C 
 

 Código de primera opción membrana circular 
 
amp=a*cos(t*w); 

switch (pc) 

 { 

 case 1: 

  for (k=0; k<=100; k++) 

  { 

   for (j=0; j<=127; j++) 

   { 

    th=PI*j/64; 

    glBegin (GL_POLYGON); 

    for (r=0; r<=1; r++) 

    { 

     x=0.01*(r+k)*R*cos(th); 

     y=0.01*(r+k)*R*sin(th); 

     if (m==0) 

     { 

      z=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w); 

     } 

     else 

     { 

      z=a*sin(n*PI*(r+k)/101)*sin(m*th)*cos(t*w); 

     } 

     c=abs(z/amp); 

     if (z>0) 

     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( x, y, z); 

    } 

    for (r=1; r>=0; r--) 

    { 

     x=0.01*(r+k)*R*cos(th+PI/64); 

     y=0.01*(r+k)*R*sin(th+PI/64); 

     if (m==0) 

     { 

      z=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w); 

     } 

     else 

     { 

      z=a*sin(n*PI*(r+k)/101)*sin(m*(th+PI/64))*cos(t*w); 

     } 

     c=abs(z/amp); 

     if (z>0) 

     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( x, y, z); 

    } 

    glEnd(); 

   } 

  } 

  break; 
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Apéndice D 
 

 Código de segunda opción en membrana circular 
 

case 2: 

 

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magn1, magn2, magn3, magn4; 

  glEnable(GL_LIGHTING); 

  SetMaterial(23); 

 

  for (k=0; k<=100; k++) 

  { 

   for (j=0; j<=127; j++) 

   { 

    th=PI*j/64; 

    glBegin (GL_POLYGON); 

    for (r=0; r<=1; r++) 

    { 

     if (m==0) 

     { 

      pvn[r]=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w); 

      pvn[r+2]=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w); 

     } 

     else 

     { 

      pvn[r]=a*sin(n*PI*(r+k)/101)*sin(m*th)*cos(t*w); 

      pvn[r+2]=a*sin(n*PI*(r+k)/101)*sin(m*(th+PI/64))*cos(t*w); 

     } 

    } 

     

    dz1=pvn[1]-pvn[0]; 

    dz2=pvn[2]-pvn[0]; 

    dz3=pvn[3]-pvn[1]; 

    dz4=pvn[3]-pvn[2]; 

  

    no[0]=0.01*R*(dz2*sin(th)-k*dz1*sin(th+65*PI/128)); 

    no[1]=0.01*R*(k*dz1*cos(th+65*PI/128)-dz2*cos(th)); 

    no[2]=pow((0.01*R),2)*k*(cos(th)*sin(th+65*PI/128)-sin(th)*cos(th+65*PI/128)); 

    magn1=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]); 

 

    no[3]=0.01*R*(dz3*sin(th)-(k+1)*dz1*sin(th+65*PI/128)); 

    no[4]=0.01*R*((k+1)*dz1*cos(th+65*PI/128)-dz3*cos(th)); 

    no[5]=pow((0.01*R),2)*(k+1)*(cos(th)*sin(th+65*PI/128)-sin(th)*cos(th+65*PI/128)); 

    magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]); 

 

    no[6]=0.01*R*(dz3*sin(th+PI/64)-(k+1)*dz4*sin(th+65*PI/128)); 

    no[7]=0.01*R*((k+1)*dz4*cos(th+65*PI/128)-dz3*cos(th+PI/64)); 

    no[8]=pow((0.01*R),2)*(k+1)*(cos(th+PI/64)*sin(th+65*PI/128)-sin(th+PI/64)*cos(th+65*PI/128)); 

    magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]); 

 

    no[9]=0.01*R*(dz2*sin(th+PI/64)-k*dz4*sin(th+65*PI/128)); 

    no[10]=0.01*R*(k*dz4*cos(th+65*PI/128)-dz2*cos(th+PI/64)); 

    no[11]=pow((0.01*R),2)*k*(cos(th+PI/64)*sin(th+65*PI/128)-sin(th+PI/64)*cos(th+65*PI/128)); 

    magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]); 

     

    for (int xx=0; xx<3; xx++) 

    { 

     vn1[xx]=no[xx]/(float)magn1; 

     vn2[xx]=no[xx+3]/(float)magn2; 

     vn3[xx]=no[xx+6]/(float)magn3; 

     vn4[xx]=no[xx+9]/(float)magn4; 

    } 

     

    for (r=0; r<=1; r++) 

    { 

     x=0.01*(r+k)*R*cos(th); 

     y=0.01*(r+k)*R*sin(th); 

      

     if (m==0) 

     { 

      z=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w); 
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     } 

     else 

     { 

      z=a*sin(n*PI*(r+k)/101)*sin(m*th)*cos(t*w); 

     } 

      

     if (r==0) 

      glNormal3fv(vn1); 

     else 

      glNormal3fv(vn2); 

 

     glVertex3f ( x, y, z); 

    } 

     

    for (r=1; r>=0; r--) 

    { 

     x=0.01*(r+k)*R*cos(th+PI/64); 

     y=0.01*(r+k)*R*sin(th+PI/64); 

     if (m==0) 

     { 

      z=a*sin((n-0.5)*(PI*(r+k)/101+PI))*cos(t*w); 

     } 

     else 

     { 

      z=a*sin(n*PI*(r+k)/101)*sin(m*(th+PI/64))*cos(t*w); 

     } 

 

     if (r==1) 

      glNormal3fv(vn3); 

     else 

      glNormal3fv(vn4); 

      

     glVertex3f ( x, y, z); 

    } 

    glEnd(); 

   } 

  } 

} 

 

} 

glDisable(GL_LIGHTING); 
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Apéndice E 
 

 Código de primera opción pulso 
 
amp=a*cos(t*w); 

  

 switch (p) 

 { 

 case 3: 

  switch (pp) 

  { 

  case 1: 

    

   v=22.5; 

   comp=0; 

   for (k=0; k<=100; k++) 

   { 

    for (j=0; j<=127; j++) 

    { 

     th=PI*j/64; 

     glBegin (GL_POLYGON); 

     for (r=0; r<=1; r++) 

     { 

      x=0.01*(r+k)*R*cos(th); 

      y=0.01*(r+k)*R*sin(th); 

       

      if (t<=1.6) 

      { 

       bb=-0.01*(r+k)*(r+k); 

       z=-0.625*a*t*exp(bb); 

      } 

      if (t>1.6 && t<=4.8) 

      { 

       bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6)); 

       z=-a*exp(bb); 

      } 

      if (t>4.8 && t<=6.4) 

      { 

       bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8)); 

       z1=-0.625*a*(6.4-t)*exp(bb); 

       bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2*(r+k)-145-v*(t-4.8)); 

       z2=-0.625*a*(6.4-t)*exp(bb); 

       if (z2<comp) 

       { 

        comp=z2; 

        z=z1; 

       } 

       else 

        z=z2; 

      } 

       

      if (z>-a*0.5) 

      { 

       glColor3f (0.5, 0.5, 0.5); 

      } 

      else 

      { 

       glColor3f (0.75, 0.75, 0.75); 

      } 

 

      glVertex3f ( x, y, z); 

     } 

     for (r=1; r>=0; r--) 

     { 

      x=0.01*(r+k)*R*cos(th+PI/64); 

      y=0.01*(r+k)*R*sin(th+PI/64); 

       

      if (t<=1.6) 

      { 

       bb=-0.01*(r+k)*(r+k); 

       z=-0.625*a*t*exp(bb); 



 

68 

 

      } 

      if (t>1.6 && t<=4.8) 

      { 

       bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6)); 

       z=-a*exp(bb); 

      } 

      if (t>4.8 && t<=6.4) 

      { 

       bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8)); 

       z1=-0.625*a*(6.4-t)*exp(bb); 

       bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2*(r+k)-145-v*(t-4.8)); 

       z2=-0.625*a*(6.4-t)*exp(bb); 

       if (z2<comp) 

       { 

        comp=z2; 

        z=z1; 

       } 

       else 

        z=z2; 

      } 

       

      if (z>-a*0.5) 

      { 

       glColor3f (0.5, 0.5, 0.5); 

      } 

      else 

      { 

       glColor3f (0.75, 0.75, 0.75); 

      } 

 

      glVertex3f ( x, y, z); 

     } 

     glEnd(); 

    } 

   } 

   break; 
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Apéndice F 
 

 Código segunda opción pulso 
 
case 2: 

 

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magn1, magn2, magn3, magn4; 

  glEnable(GL_LIGHTING); 

  SetMaterial(6); 

   

  v=22.5; 

  comp=0; 

  for (k=0; k<=100; k++) 

  { 

   for (j=0; j<=127; j++) 

   { 

    th=PI*j/64; 

    glBegin (GL_POLYGON); 

 

    for (r=0; r<=1; r++) 

    { 

 

     if (t<=1.6) 

     { 

      bb=-0.01*(r+k)*(r+k); 

      pvn[r]=-0.625*a*t*exp(bb); 

      pvn[r+2]=pvn[r]; 

     } 

     if (t>1.6 && t<=4.8) 

     { 

      bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6)); 

      pvn[r]=-a*exp(bb); 

      pvn[r+2]=pvn[r]; 

     } 

     if (t>4.8 && t<=6.4) 

     { 

      bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8)); 

      z1=-0.625*a*(6.4-t)*exp(bb); 

      bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2*(r+k)-145-v*(t-4.8)); 

      z2=-0.625*a*(6.4-t)*exp(bb); 

      if (z2<comp) 

      { 

       comp=z2; 

       pvn[r]=z1; 

       pvn[r+2]=z1; 

      } 

      else 

       pvn[r]=z2; 

       pvn[r+2]=z2; 

     }     

    } 

     

    dz1=pvn[1]-pvn[0]; 

    dz2=pvn[2]-pvn[0]; 

    dz3=pvn[3]-pvn[1]; 

    dz4=pvn[3]-pvn[2]; 

  

    no[0]=0.01*R*(dz2*sin(th)-k*dz1*sin(th+65*PI/128)); 

    no[1]=0.01*R*(k*dz1*cos(th+65*PI/128)-dz2*cos(th)); 

    no[2]=pow((0.01*R),2)*k*(cos(th)*sin(th+65*PI/128)-sin(th)*cos(th+65*PI/128)); 

    magn1=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]); 

 

    no[3]=0.01*R*(dz3*sin(th)-(k+1)*dz1*sin(th+65*PI/128)); 

    no[4]=0.01*R*((k+1)*dz1*cos(th+65*PI/128)-dz3*cos(th)); 

    no[5]=pow((0.01*R),2)*(k+1)*(cos(th)*sin(th+65*PI/128)-sin(th)*cos(th+65*PI/128)); 

    magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]); 

 

    no[6]=0.01*R*(dz3*sin(th+PI/64)-(k+1)*dz4*sin(th+65*PI/128)); 

    no[7]=0.01*R*((k+1)*dz4*cos(th+65*PI/128)-dz3*cos(th+PI/64)); 

    no[8]=pow((0.01*R),2)*(k+1)*(cos(th+PI/64)*sin(th+65*PI/128)-sin(th+PI/64)*cos(th+65*PI/128)); 

    magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]); 
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    no[9]=0.01*R*(dz2*sin(th+PI/64)-k*dz4*sin(th+65*PI/128)); 

    no[10]=0.01*R*(k*dz4*cos(th+65*PI/128)-dz2*cos(th+PI/64)); 

    no[11]=pow((0.01*R),2)*k*(cos(th+PI/64)*sin(th+65*PI/128)-sin(th+PI/64)*cos(th+65*PI/128)); 

    magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]); 

    

    for (int xx=0; xx<3; xx++) 

    { 

     vn1[xx]=no[xx]/magn1; 

     vn2[xx]=no[xx+3]/magn2; 

     vn3[xx]=no[xx+6]/magn3; 

     vn4[xx]=no[xx+9]/magn4; 

    } 

    for (r=0; r<=1; r++) 

    { 

     x=0.01*(r+k)*R*cos(th); 

     y=0.01*(r+k)*R*sin(th); 

     

     if (t<=1.6) 

     { 

      bb=-0.01*(r+k)*(r+k); 

      z=-0.625*a*t*exp(bb); 

     } 

     if (t>1.6 && t<=4.8) 

     { 

      bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6)); 

      z=-a*exp(bb); 

     } 

     if (t>4.8 && t<=6.4) 

     { 

      bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8)); 

      z1=-0.625*a*(6.4-t)*exp(bb); 

      bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2*(r+k)-145-v*(t-4.8)); 

      z2=-0.625*a*(6.4-t)*exp(bb); 

      if (z2<comp) 

      { 

       comp=z2; 

       z=z1; 

      } 

      else 

       z=z2; 

     } 

     

     if (r==0) 

      glNormal3fv(vn1); 

     else 

      glNormal3fv(vn2); 

     

     glVertex3f ( x, y, z); 

    } 

    

    for (r=1; r>=0; r--) 

    { 

     x=0.01*(r+k)*R*cos(th+PI/64); 

     y=0.01*(r+k)*R*sin(th+PI/64); 

     

     if (t<=1.6) 

     { 

      bb=-0.01*(r+k)*(r+k); 

      z=-0.625*a*t*exp(bb); 

     } 

     if (t>1.6 && t<=4.8) 

     { 

      bb=-0.01*(r+k-v*(t-1.6))*(r+k-v*(t-1.6)); 

      z=-a*exp(bb); 

     } 

     if (t>4.8 && t<=6.4) 

     { 

      bb=-0.01*(1.1*(r+k)-78.5-v*(t-4.8))*(1.1*(r+k)-78.5-v*(t-4.8)); 

      z1=-0.625*a*(6.4-t)*exp(bb); 

      bb=-0.01*(2*(r+k)-145-v*(t-4.8))*(2*(r+k)-145-v*(t-4.8)); 

      z2=-0.625*a*(6.4-t)*exp(bb); 

      if (z2<comp) 
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      { 

       comp=z2; 

       z=z1; 

      } 

      else 

       z=z2; 

     } 

     if (r==1) 

      glNormal3fv(vn3); 

     else 

      glNormal3fv(vn4); 

     

     glVertex3f ( x, y, z); 

    } 

    glEnd(); 

} 

} 

}   

  break; 

glDisable(GL_LIGHTING); 
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Apéndice G 
 

 Código primera opción tren de onda 
 
amp=a*cos(t*w); 

switch (pt) 

 { 

 case 1: 

  v=1.0; 

  for (k=0; k<=100; k++) 

  { 

   for (j=0; j<=127; j++) 

   { 

    th=PI*j/64; 

    glBegin (GL_POLYGON); 

    for (r=0; r<=1; r++) 

    { 

     x=0.01*(r+k)*R*cos(th); 

     y=0.01*(r+k)*R*sin(th); 

     if (t<=1.6) 

     { 

      bb=-0.01*(r+k)*(r+k); 

      z=-0.625*a*t*exp(bb); 

     } 

     if (t>1.6) 

     { 

      z=-a*sin(0.1*(k+r)-v*t+0.5*PI); 

     } 

      

     c=abs(z/amp); 

     if (z>0) 

     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( x, y, z); 

    } 

    for (r=1; r>=0; r--) 

    { 

     x=0.01*(r+k)*R*cos(th+PI/64); 

     y=0.01*(r+k)*R*sin(th+PI/64); 

     if (t<=1.6) 

     { 

      bb=-0.01*(r+k)*(r+k); 

      z=-0.625*a*t*exp(bb); 

     } 

     if (t>1.6) 

     { 

      z=-a*sin(0.1*(k+r)-v*t+0.5*PI); 

     } 

      

     c=abs(z/amp); 

     if (z>0) 

     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( x, y, z); 

    } 

    glEnd(); 

   } 

  } 

   

  break; 
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Apéndice H 
 

 Código segunda opción tren de onda 
 

case 2: 

 

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magn1, magn2, magn3, magn4; 

  glEnable(GL_LIGHTING); 

  SetMaterial(4); 

 

  v=1.0; 

   

  for (k=0; k<=100; k++) 

  { 

   for (j=0; j<=127; j++) 

   { 

    th=PI*j/64; 

    glBegin (GL_POLYGON); 

 

    for (r=0; r<=1; r++) 

    { 

     if (t<=1.6) 

     { 

      bb=-0.01*(r+k)*(r+k); 

      pvn[r]=-0.625*a*t*exp(bb); 

      pvn[r+2]=pvn[r]; 

     } 

     if (t>1.6) 

     { 

      pvn[r]=-a*sin(0.1*(k+r)-v*t+0.5*PI); 

      pvn[r+2]=pvn[r]; 

     } 

    } 

     

    dz1=pvn[1]-pvn[0]; 

    dz2=pvn[2]-pvn[0]; 

    dz3=pvn[3]-pvn[1]; 

    dz4=pvn[3]-pvn[2]; 

  

    no[0]=0.01*R*(dz2*sin(th)-k*dz1*sin(th+65*PI/128)); 

    no[1]=0.01*R*(k*dz1*cos(th+65*PI/128)-dz2*cos(th)); 

    no[2]=pow((0.01*R),2)*k*(cos(th)*sin(th+65*PI/128)-sin(th)*cos(th+65*PI/128)); 

    magn1=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]); 

 

    no[3]=0.01*R*(dz3*sin(th)-(k+1)*dz1*sin(th+65*PI/128)); 

    no[4]=0.01*R*((k+1)*dz1*cos(th+65*PI/128)-dz3*cos(th)); 

    no[5]=pow((0.01*R),2)*(k+1)*(cos(th)*sin(th+65*PI/128)-sin(th)*cos(th+65*PI/128)); 

    magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]); 

 

    no[6]=0.01*R*(dz3*sin(th+PI/64)-(k+1)*dz4*sin(th+65*PI/128)); 

    no[7]=0.01*R*((k+1)*dz4*cos(th+65*PI/128)-dz3*cos(th+PI/64)); 

    no[8]=pow((0.01*R),2)*(k+1)*(cos(th+PI/64)*sin(th+65*PI/128)-sin(th+PI/64)*cos(th+65*PI/128)); 

    magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]); 

 

    no[9]=0.01*R*(dz2*sin(th+PI/64)-k*dz4*sin(th+65*PI/128)); 

    no[10]=0.01*R*(k*dz4*cos(th+65*PI/128)-dz2*cos(th+PI/64)); 

    no[11]=pow((0.01*R),2)*k*(cos(th+PI/64)*sin(th+65*PI/128)-sin(th+PI/64)*cos(th+65*PI/128)); 

    magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]); 

      

    for (int xx=0; xx<3; xx++) 

    { 

     vn1[xx]=no[xx]/magn1; 

     vn2[xx]=no[xx+3]/magn2; 

     vn3[xx]=no[xx+6]/magn3; 

     vn4[xx]=no[xx+9]/magn4; 

    } 

    for (r=0; r<=1; r++) 

    { 

     x=0.01*(r+k)*R*cos(th); 

     y=0.01*(r+k)*R*sin(th); 
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     if (t<=1.6) 

    { 

     bb=-0.01*(r+k)*(r+k); 

     z=-0.625*a*t*exp(bb); 

    } 

    if (t>1.6) 

    { 

     z=-a*sin(0.1*(k+r)-v*t+0.5*PI); 

    } 

    

    if (r==0) 

      glNormal3fv(vn1); 

     else 

      glNormal3fv(vn2); 

      

     glVertex3f ( x, y, z); 

    } 

     

    for (r=1; r>=0; r--) 

    { 

     x=0.01*(r+k)*R*cos(th+PI/64); 

     y=0.01*(r+k)*R*sin(th+PI/64); 

      

     if (t<=1.6) 

    { 

     bb=-0.01*(r+k)*(r+k); 

     z=-0.625*a*t*exp(bb); 

    } 

    if (t>1.6) 

    { 

     z=-a*sin(0.1*(k+r)-v*t+0.5*PI); 

    } 

     

    if (r==1) 

     glNormal3fv(vn3); 

    else 

     glNormal3fv(vn4); 

    glVertex3f ( x, y, z); 

    } 

    glEnd(); 

   } 

  } 

} 

defautlt:; 

} 

glDisable(GL_LIGHTING); 
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Apéndice I 
 

 Código primera opción placa 
 
amp=a*cos(t*w); 

 

 switch (pl) 

 { 

 case 1: 

   

  glBegin (GL_POLYGON); 

  glColor3f (0.4, 0.4, 0.35); 

  glVertex3f (-0.05, -0.05, 0); 

  glVertex3f ( -0.05, 1.02*d+0.05, 0); 

  glVertex3f ( -0.05, 1.02*d+0.05, espesor); 

  glVertex3f ( -0.05, 0, espesor); 

  glEnd(); 

 

  glBegin (GL_POLYGON); 

  glColor3f (0.4, 0.4, 0.35); 

  glVertex3f (1.01*b+0.05, -0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor); 

  glVertex3f ( 1.01*b+0.05, -0.05, espesor); 

  glEnd(); 

 

  glBegin (GL_POLYGON); 

  glColor3f (0.4, 0.4, 0.35); 

  glVertex3f (-0.05, 1.02*d+0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor); 

  glVertex3f ( -0.05, 1.02*d+0.05, espesor); 

  glEnd(); 

 

  glBegin (GL_POLYGON); 

  glColor3f (0.4, 0.4, 0.35); 

  glVertex3f (-0.05, -0.05, 0); 

  glVertex3f ( 1.01*b+0.05, -0.05, 0); 

  glVertex3f ( 1.01*b+0.05, -0.05, espesor); 

  glVertex3f ( -0.05, -0.05, espesor); 

  glEnd(); 

   

  for (k=0; k<=100; k++) 

  { 

   if (k>0) 

    glTranslatef(0.01*b, 0.0f, 0.0f); 

    

   for (j=0; j<=50; j++) 

   { 

    glBegin (GL_POLYGON); 

 

    //Placa inferior 

    for (i=0; i<=1; i++) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

     c=abs(z/amp); 

     if (z>0) 

     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( 0.01*b*i, 0.02*d*j, z); 

    } 

    for (i=1; i>=0; i--) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 

     c=abs(z/amp); 

     if (z>0) 
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     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z); 

    } 

 

    //Placa superior 

    for (i=0; i<=1; i++) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

     c=abs(z/amp); 

     if (z>0) 

     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( 0.01*b*i, 0.02*d*j, z+espesor); 

    } 

    for (i=1; i>=0; i--) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 

     c=abs(z/amp); 

     if (z>0) 

     { 

      glColor3f (0.5, 0.35*c+.45, 0.25*c+0.25); 

     } 

     else 

     { 

      glColor3f (0.25*c+.25, 0.35*c+.45, 0.5); 

     } 

     glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z+espesor); 

    } 

    glEnd(); 

   } 

  } 

  break; 
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Apéndice J 
 

 Código segunda opción placa 
 

case 2: 

 

float pvn[4], vn1[3], vn2[3], vn3[3], vn4[3], no[12], dz1, dz2, dz3, dz4, magn1, magn2, magn3, magn4; 

  glEnable(GL_LIGHTING); 

  SetMaterial(15); 

 

 

  glBegin (GL_POLYGON); 

  glNormal3f(1.0, 0.0, 0.0); 

  glVertex3f (-0.05, -0.05, 0); 

  glVertex3f ( -0.05, 1.02*d+0.05, 0); 

  glVertex3f ( -0.05, 1.02*d+0.05, espesor); 

  glVertex3f ( -0.05, 0, espesor); 

  glEnd(); 

 

  glBegin (GL_POLYGON); 

  glNormal3f(1.0, 0.0, 0.0); 

  glVertex3f (1.01*b+0.05, -0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor); 

  glVertex3f ( 1.01*b+0.05, -0.05, espesor); 

  glEnd(); 

 

  glBegin (GL_POLYGON); 

  glNormal3f(0.0, -1.0, 0.0); 

  glVertex3f (-0.05, 1.02*d+0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, 0); 

  glVertex3f ( 1.01*b+0.05, 1.02*d+0.05, espesor); 

  glVertex3f ( -0.05, 1.02*d+0.05, espesor); 

  glEnd(); 

 

  glBegin (GL_POLYGON); 

  glNormal3f(0.0, -1.0, 0.0); 

  glVertex3f (-0.05, -0.05, 0); 

  glVertex3f ( 1.01*b+0.05, -0.05, 0); 

  glVertex3f ( 1.01*b+0.05, -0.05, espesor); 

  glVertex3f ( -0.05, -0.05, espesor); 

  glEnd(); 

   

  for (k=0; k<=100; k++) 

  { 

   if (k>0) 

    glTranslatef(0.01*b, 0.0f, 0.0f); 

    

   for (j=0; j<=50; j++) 

   { 

    glBegin (GL_POLYGON); 

    for (i=0; i<=1; i++) 

    { 

     pvn[i]=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

     pvn[i+2]=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 

    } 

     

    dz1=pvn[1]-pvn[0]; 

    dz2=pvn[2]-pvn[0]; 

    dz3=pvn[3]-pvn[1]; 

    dz4=pvn[3]-pvn[2]; 

  

    no[0]=-0.02*d*dz1; 

    no[1]=-0.01*b*dz2; 

    no[2]=0.01*0.02*b*d; 

    magn1=sqrt(no[0]*no[0]+no[1]*no[1]+no[2]*no[2]); 

 

    no[3]=-0.02*d*dz1; 

    no[4]=-0.01*b*dz3; 

    no[5]=no[2]; 

    magn2=sqrt(no[3]*no[3]+no[4]*no[4]+no[5]*no[5]); 
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    no[6]=-0.02*d*dz4; 

    no[7]=-0.01*b*dz3; 

    no[8]=no[2]; 

    magn3=sqrt(no[6]*no[6]+no[7]*no[7]+no[8]*no[8]); 

 

    no[9]=-0.02*d*dz4; 

    no[10]=-0.01*b*dz2; 

    no[11]=no[2]; 

    magn4=sqrt(no[9]*no[9]+no[10]*no[10]+no[11]*no[11]); 

     

     

    for (int xx=0; xx<3; xx++) 

    { 

     vn1[xx]=no[xx]/(float)magn1; 

     vn2[xx]=no[xx+3]/(float)magn2; 

     vn3[xx]=no[xx+6]/(float)magn3; 

     vn4[xx]=no[xx+9]/(float)magn4; 

    } 

    //Placa inferior 

    for (i=0; i<=1; i++) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

      

     if (i==0) 

      glNormal3fv(vn1); 

     else 

      glNormal3fv(vn2); 

     glVertex3f ( 0.01*b*i, 0.02*d*j, z); 

    } 

     

    for (i=1; i>=0; i--) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 

      

     if (i==1) 

      glNormal3fv(vn3); 

     else 

      glNormal3fv(vn4); 

     glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z); 

    } 

     

    //Placa superior 

    for (i=0; i<=1; i++) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*j/51)*cos(t*w); 

     if (i==0) 

      glNormal3fv(vn1); 

     else 

      glNormal3fv(vn2); 

     glVertex3f ( 0.01*b*i, 0.02*d*j, z+espesor); 

    } 

     

    for (i=1; i>=0; i--) 

    { 

     z=a*sin(m*PI*(i+k)/101)*sin(n*PI*(j+1)/51)*cos(t*w); 

      

     if (i==1) 

      glNormal3fv(vn3); 

     else 

      glNormal3fv(vn4); 

     glVertex3f ( 0.01*b*i, 0.02*d*(j+1), z+espesor); 

    } 

    glEnd(); 

   } 

  } 

  break; 

}glDisable(GL_LIGHTING);  
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Apéndice K 
 

 Animación 
 
float t; 

 

   

 if (GetState()==PIN) 

 { 

  t= (float)(GetTickCount()-m_time_0)/1000.0; 

  DrawGeometry(t); 

  DrawPulse(t); 

 } 

 else if (GetState() == SUSPEND) 

 { 

  t= 0.0; 

  DrawGeometry(t);  

  DrawPulse(t); 

 } 

  else if(GetState() == POUT) 

 { 

  t=(float)(t_pausa-m_time_0)/1000.0; 

  DrawGeometry(t); 

  DrawPulse(t); 

 } 

 

 

 



 

 
 

 

 

 

 

 

 

“¡Travesura realizada!”- George Weasley Harry Potter y el Prisionero de Azkaban.  

Capítulo 10. El mapa del merodeador 

 

 


